LETTER
described in: (c) Rietveld, M. H. P.; Grove, D. M.; van
N-Heterocyclic NCN-Pincer Palladium Complexes
3119
152.5 (C-3¢), 154.6 (C-4), 166.8 (CO). Anal. calcd for
Koten, G. New J. Chem. 1997, 21, 751. (d) Dijkstra, H. P.;
Slagt, M. Q.; McDonald, A.; Kruithof, C. A.; Kreiter, R.;
Mills, A. M.; Lutz, M.; Spek, A. L.; Klopper, W.; van Klink,
G. P. M.; van Koten, G. Eur. J. Inorg. Chem. 2003, 830.
(e) Slagt, M. Q.; van Zwieten, D. A. P.; Moerkerk, A. J. C.
M.; Gebbink, R. J. M. K.; van Koten, G. Coord. Chem. Rev.
2004, 248, 2275. (f) Takenaka, K.; Minakawa, M.; Uozomi,
Y. J. Am. Chem. Soc. 2005, 127, 12273.
There is discussion about the real role of pincer complexes
in palladium-catalyzed reactions, as their decomposition to
generate Pd(0) in several Heck reaction conditions is well
documented. See, for example: (g) Sommer, W. J.; Yu, K.;
Sears, J. S.; Ji, Y.; Zheng, X.; Davis, R. J.; Sherill, C. D.;
Jones, C. W.; Weck, M. Organometallics 2005, 24, 4351.
(h) Olsson, D.; Nilsson, P.; El Masnaouy, M.; Wendt, O. F.
Dalton Trans. 2005, 1924. (i) Bergbreiter, D. E.; Osburn, P.
L.; Frels, J. D. Adv. Synth. Catal. 2005, 347, 172.
C20H23ClN4O2Pd: C, 48.70; H, 4.70; N, 11.36. Found: C,
48.74; H, 4.67; N, 11.35.
(12) General procedure: A dry 5-mL round-bottom flask was
charged with aryl bromide (1 mmol), alkene (1.5 mmol),
catalyst 2 (0.001 mmol Pd), and anhyd DMF (1 mL). The
mixture was stirred at 140 °C under argon for 18 h. After
cooling, H2O (10 mL) was added, and the aqueous layer was
extracted with EtOAc (3 × 10 mL). The combined organic
extracts were dried over anhyd Na2SO4 and evaporated in
vacuo. The residue was dissolved in CDCl3 and analyzed by
1H NMR and 13C NMR spectroscopy [bis(ethylene glycol)
dimethyl ether as an internal standard]; the identity of every
product was confirmed by comparison with spectroscopic
data in the literature.
(13) The range of assays performed was based on the following
reports, basically replacing the employed catalysts by
palladacycles 2, see: (a) Alo, B. I.; Kandil, A.; Patil, P. A.;
Sharp, M. J.; Siddiqui, M. A.; Snieckus, V.; Josephy, P. D.
J. Org. Chem. 1991, 56, 3763. (b) Müller, W.; Lowe, D. A.;
Neijt, H.; Urwyler, S.; Herrling, P. L.; Blaser, D.; Seebach,
D. Helv. Chim. Acta 1992, 75, 855. (c) Coleman, R. S.;
Grant, E. B. Tetrahedron Lett. 1993, 34, 2225. (d) Shieh,
W.-C.; Carlson, J. A. J. Org. Chem. 1992, 57, 379.
(e) Wallow, T. I.; Novak, B. M. J. Org. Chem. 1994, 59,
5034. (f) Marck, G.; Villiger, A.; Buchecker, R.
(5) (a) Najera, C.; Gil-Moltó, J.; Karlström, S.; Falvello, L. R.
Org. Lett. 2003, 5, 1451. (b) Iyer, S.; Jayanthi, A. Synlett
2003, 1125. (c) Wang, A.-E.; Xie, J.-H.; Wang, L.-X.; Zhou,
Q.-L. Tetrahedron 2005, 61, 259.
(6) (a) CNC: Loch, J. A.; Albrecht, M.; Peris, E.; Mata, J.;
Faller, J.; Crabtree, R. H. Organometallics 2002, 21, 700.
(b) PCP: Lee, H. M.; Zeng, J. Y.; Hu, C.-H.; Lee, M.-T.
Inorg. Chem. 2004, 43, 6822. (c) SCS: Zim, D.; Grubber,
A. S.; Ebeling, G.; Dupont, J.; Monteiro, A. L. Org. Lett.
2000, 2, 2881.
(7) The application of such NCN-palladacycles in Heck
coupling is restricted to the following reports: (a)Magill,A.
M.; McGuiness, D. S.; Cavell, K. J.; Britovsek, G. J. P.;
Gibson, V. C.; White, A. J. P.; Williams, D. J.; White, A. M.
J. Organomet. Chem. 2001, 617-618, 546. (b) Díez-Barra,
E.; Guerra, J.; Hornillos, V.; Merino, S.; Tejeda, J.
Organometallics 2003, 22, 4610. (c) Jung, I. G.; Son, S. U.;
Park, K. H.; Chung, K.-C.; Lee, J. W.; Chung, Y. K.
Organometallics 2003, 22, 4715. (d) We found only two
reports that use the above-mentioned heterocyclic NCN-
pincers in the Suzuki reaction: Gupta, A. K.; Rim, C. Y.; Oh,
C. H. Synlett 2004, 2227; see also ref. 7a.
(8) Hartshorn, C. M.; Steel, P. J. Organometallics 1998, 17,
3487. In our case, overall yield of complexes 2a–b starting
from commercially available 1,3-bis(bromomethyl)-1-
methylbenzoate (3) was 90–95%.
(9) Abe, T.; Matsunaga, H.; Mihira, A.; Sato, C.; Ushirogochi,
H.; Sato, K.; Takasaki, T.; Venkatesan, A. M.; Mansour, T.
S. U.S. Patent US2004132708, 2004; Chem. Abstr. 2004,
141, 106320.
(10) Liu, P.; Chen, Y.; Deng, J.; Tu, Y. Synthesis 2001, 2078.
(11) 2a: white powder, mp >300 °C (EtOAc). FTIR (neat film):
1714, 1592, 1510, 1412 cm–1. 1H NMR (500 MHz, DMSO):
d = 3.83 (3 H, s, CH3), 5.55 (4 H, s, CH2), 6.46 (2 H, dd, J =
2.0, 1.6 Hz, H-4¢), 7.70 (2 H, s, H2, H-6), 7.92 (2 H, d, J =
1.6 Hz, H-5¢), 8.14 (2 H, d, J = 2.1 Hz, H-3¢). 13C NMR (63
MHz, DMSO): d = 52.1 (CH3), 56.7 (CH2), 106.6 (C-4¢),
125.9 (C-2, C-6), 126.4 (C-1), 133.1 (C-5¢), 137.2 (C-3, C-
5), 143.2 (C-3¢), 150.7 (C-4), 166.2 (CO). Anal. calcd for
C16H15ClN4O2Pd: C, 43.96; H, 3.46; N, 12.82. Found: C,
43.93; H, 3.48; N, 12.83.
Tetrahedron Lett. 1994, 35, 3277. (g) Watanabe, T.;
Miyaura, N.; Suzuki, A. Synlett 1992, 207. (h) Kelly, T. R.;
García, A.; Lang, F.; Walsh, J. J.; Bhaskar, K. V.; Boyd, M.
R.; Götz, R.; Keller, P. A.; Walter, R.; Bringmann, G.
Tetrahedron Lett. 1994, 35, 7621.
(14) Similar reaction conditions employing a silica-supported
tetradentate NHC catalyst were performed by: Zhao, Y.;
Zhou, Y.; Ma, D.; Liu, J.; Li, L.; Zhang, T. Y.; Zhang, H.
Org. Biomol. Chem. 2003, 1, 1643.
(15) General procedure: A 5-mL round-bottom flask was charged
with ArBr (1 mmol), ArB(OH)2 (1.5 mmol), catalyst 2
(0.001 mmol Pd), K2CO3 (2 mmol), and H2O (1 mL). The
mixture was stirred at 100 °C in air for 2 h. After cooling,
Na2CO3 (5 mL of 10% solution in water) was added, and the
aqueous layer was extracted with CH2Cl2 (2 × 5 mL). The
combined organic extracts were dried over anhyd Na2SO4
and evaporated in vacuo. The residue was dissolved in
CDCl3 and analyzed by 1H NMR spectroscopy [using
bis(ethylene glycol) dimethyl ether as an internal standard];
the identity of every product was confirmed by comparison
with spectroscopic data in the literature.
(16) NCN-, PCP-, CNC-, and NCP-pincer complexes have been
used as catalysts in Suzuki coupling reactions, TON values
varying from 20 to 177500, see: (a) Bedford, R. B.; Draper,
S. M.; Scully, P. N.; Welch, S. L. New J. Chem. 2000, 24,
745. (b) Steel, P. G.; Teasdale, C. W. T. Tetrahedron Lett.
2004, 45, 8977. (c) Rosa, G. R.; Ebeling, G.; Dupont, J.;
Monteiro, A. L. Synthesis 2003, 2894. (d) Vicente, J.;Abad,
J.-A.; López-Serrano, J.; Jones, P. G.; Nájera, C.; Botella-
Segura, L. Organometallics 2005, 24, 5044; see also ref. 6a,
6b, 7a, and 7d.
(17) A 5-mL round-bottom flask was charged with ArI (1 mmol),
alkyne (1.5 mmol), catalyst 2 (0.001 mmol Pd), and
pyrrolidine (2 mL). The mixture was stirred at 100 °C in air
for 6 h. After cooling, the solvent was evaporated in vacuo.
The residue was dissolved in CDCl3 and analyzed by 1H
NMR spectroscopy [using bis(ethylene glycol) dimethyl
ether as an internal standard]; the identity of every product
was confirmed by comparison with spectroscopic data in the
literature.
2b: white powder, mp >300 °C (EtOAc). FTIR (neat film):
1702, 1590, 1549, 1425 cm–1. 1H NMR (500 MHz, CDCl3):
d = 2.34 (6 H, s, C5¢-CH3), 2.61 (6 H, s, C3¢-CH3), 3.87 (3 H,
s, COOCH3), 4.95 (2 H, d, J 14.1 Hz, CHaHb), 5.66 (2 H, d,
J = 14.1 Hz, CHaHb), 5.82 (2 H, s, H-4¢), 7.58 (2H, s, H-2,
H-6). 13C NMR (63 MHz, CDCl3): d = 11.7 (C-5¢CH3), 15.5
(C-3¢CH3), 52.0 (COOCH3), 54.1 (CH2), 107.1 (C-4¢), 125.5
(C-2, C-6), 126.3 (C-1), 137.3 (C-3, C-5), 140.4 (C-5¢),
Synlett 2005, No. 20, 3116–3120 © Thieme Stuttgart · New York