control system, Science, 1977, 197: 287.
Garfinkel, A., Spano, M. L., Ditto, W. L. et al., Controlling car-
diac chaos, Science, 1992, 257: 1230.
Cavalcanti, S., Belardinelli, E., Modeling of cardiovascular vari-
ability using a differential delay equation, IEEE Trans. Bio. Eng.,
16. Kostelich, E. J., Yorke, J. A., Noise reduction: Finding simplest
dynamical system consistent with data, Physica D, 1990, 41: 183.
17. Farmer, J. D., Sidorowich, J. J., Optimal shadowing and noise re-
duction, Physica D, 1991, 47: 373.
18. Hull, S. S., Billman, G. E., Stone, H. L. et al., Heart rate variabil-
ity before and after myocardial infarction in conscious dogs at
high and low risk of sudden death, Journal of American College of
Cardiology, 1990, 16(4): 978.
19. Moon, T. K., The expectation-maximization algorithm, IEEE
Signal Processing Magazine, 1996, 13: 47.
20. Mees, A. I., Judd, K., Danger of geometric filtering, Physica D,
1993, 68: 427.
2
3
.
.
1
996, 43: 982.
4
5
6
7
.
.
.
.
Goldberger, A. L., Rigney, D. R., West, J. B., Chaos and fractals in
human physiology, Sci. Am., 1990, 262: 42.
Cao, L. Y., Mees, A. I., Judd, K., Dynamics from multivariate time
series, Physica D, 1998, 121: 75.
Poon, C. S., Merrill, C. K., Decrease of cardiac chaos in conges-
tive heart failure, Nature, 1997, 389: 492.
Chon, K. H., Kanters, J. K., Cohen, R. J., Detection of chaotic de-
terminism in time series from randomly forced maps, Physica D,
21. Theiler, J., Eubank, S., Longtin, A., et al., Testing for nonlinearity
in time series: The method of surrogate data, Physica D, 1992, 58:
77.
1
997, 99: 471.
8
9
.
.
Judd, K., Mees, A. I., Embedding as a modeling problem, Physica
D, 1998, 120: 273.
Gershenfeld, N., Schoner, B., Metois, E., Cluster-weighted mod-
eling for time-series analysis, Nature, 1999, 397: 329.
22. Schreiber, T., Schmitz, A., Surrogate time series, Physica D, 2000,
142: 346.
23. Sugihara, G., May, R. M., Nonlinear forecasting as a way of dis-
tinguishing chaos from measurement error in time series, Nature,
1990, 344: 734.
24. Lefebvre, J. H., Doodings, D. A., Kamath, M. V. et al., Predict-
ability of normal heart rhythms and deterministic chaos, Chaos,
1993, 3: 267.
1
1
0. Judd, K., Small, M., Towards long-term prediction, Physica D,
000, 136: 31.
1. Gribkov, D., Gribkova, V., Learning dynamics from nonstationary
time series: Analysis of electroencephalograms, Phys. Rev. E,
2
2
000, 61: 6538.
25. Yu, D. J., Small, M., Harrison, R. G. et al., Measuring temporal
complexity of ventricular fibrillation, Phys. Lett. A, 2000, 265:
68.
1
2. Small, M., Judd, K., Comparisons of new nonlinear modeling
techniques with applications to infant respiration, Physica D, 1998,
1
17: 283.
26. Small, M., Yu, D. J., Harrison, R. G. et al., Deterministic nonlin-
earity in ventricular fibrillation, Chaos, 2000, 10: 268.
27. Kaplan, D. T., Cohen, R. J., Is fibrillation chaos? Cir. Res., 1990,
67: 886.
1
1
1
3. Barahona, M., Poon, C. S., Detection of nonlinear dynamics in
short, noisy time series, Nature, 1996, 381: 215.
4. Davies, M. E., Nonlinear noise reduction through Monte Carlo
sampling, Chaos, 1998, 8: 775.
5. Davies, M. E., Noise reduction schemes for chaotic time series,
Physica D, 1994, 79: 174.
(
Received March 14, 2001)
Chinese Science Bulletin Vol. 46 No. 1 January 2001
1573