294
S. Distinto et al. / European Journal of Medicinal Chemistry 48 (2012) 284e295
phosphate and horseradish peroxidase (supplied in the AmplexÒ
Red MAO assay kit from Molecular Probes).
[15] G.H. Braun, D.M.M. Jorge, H.P. Ramos, R.M. Alves, V.B. da Silva, S. Giuliatti,
S.V. Sampaio, C.A. Taft, C. Silva, Molecular dynamics, flexible docking, virtual
screening, ADMET predictions, and molecular interaction field studies to
design novel potential MAO-B inhibitors, J. Biomol. Struct. Dyn. 25 (2008)
347e355.
[16] K. Boppana, P.K. Dubey, S. Jagarlapudi, S. Vadivelan, G. Rambabu, Knowledge
based identification of MAO-B selective inhibitors using pharmacophore and
structure based virtual screening models, Eur. J. Med. Chem. 44 (2009)
3584e3590.
[17] H. Kubinyi, Similarity and dissimilarity: a medicinal chemist’s view, perspect,
Drug Discov. 9-11 (1998) 225e252.
[18] C.G. Wermuth, Selective optimization of side activities: another way for drug
discovery, J. Med. Chem. 47 (2004) 1303e1314.
[19] M. Yáñez, N. Fraiz, E. Cano, F. Orallo, Inhibitory effects of cis- and trans-
resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on
monoamine oxidase activity, Biochem. Biophys. Res. Commun. 344 (2006)
688e695.
[20] H. Berman, K. Henrick, H. Nakamura, Announcing the worldwide protein data
bank, Nat. Struct. Biol. 10 (2003) 980.
Appropriate dilutions of the above drugs were prepared every
day immediately before use in deionized water from the following
concentrated stock solutions kept at ꢀ20 ꢂC: the new compounds
(0.1 M) in DMSO; R-(ꢀ)-deprenyl, moclobemide, iproniazid, resor-
ufin, clorgyline, p-tyramine and horseradish peroxidase (0.1 M) in
deionized water.
Due to the photosensitivity of some chemicals (e.g., AmplexÒ
Red reagent), all experiments were performed in the dark. In all
assays, neither deionized water (Milli-QÒ, Millipore Ibérica S.A.,
Madrid, Spain) nor appropriate dilutions of the vehicle used
(DMSO) had significant pharmacological effects.
[21] Molecular Operating Environment (MOE), Chemical Computing Group, Inc,
Montreal, 2008, 10.
Acknowledgments
[22] C. Barillari, J. Taylor, R. Viner, J.W. Essex, Classification of water molecules in
protein binding sites, J. Am. Chem. Soc. 129 (2007) 2577e2587.
[23] N. Huang, B.K. Shoichet, Exploiting ordered waters in molecular docking,
J. Med. Chem. 51 (2008) 4862e4865.
[24] M. Catto, O. Nicolotti, F. Leonetti, A. Carotti, A.D. Favia, R. Soto-Otero,
E. Mendez-Alvarez, A. Carotti, Structural insights into monoamine oxidase
inhibitory potency and selectivity of 7-substituted coumarins from ligand-
and target-based approaches, J. Med. Chem. 49 (2006) 4912e4925.
[25] L. Novaroli, A. Daina, E. Favre, J. Bravo, A. Carotti, F. Leonetti, M. Catto,
P.A. Carrupt, M. Reist, Impact of species-dependent differences on screening,
design, and development of MAO-B inhibitors, J. Med. Chem. 49 (2006)
6264e6272.
The work was supported by Fondazione Banco di Sardegna-
Sassari-Italy, Ministerio de Sanidad
y Consumo (Spain; FISS
PI061537) and Consellería de Innovación e Industria de la Xunta de
Galicia (Spain; INCITE07PXI203039ES, INCITE08E1R203054ES and
08CSA019203PR). The authors wish to thank Mr Roberto Maxia for
the technical support.
Appendix. Supplementary data
[26] F. Chimenti, E. Maccioni, D. Secci, A. Bolasco, P. Chimenti, A. Granese, O. Befani,
P. Turini, S. Alcaro, F. Ortuso, R. Cirilli, F. La Torre, M.C. Cardia, S. Distinto,
Synthesis, molecular modeling studies, and selective inhibitory activity
against monoamine oxidase of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-(1H)-
pyrazole derivatives, J. Med. Chem. 48 (2005) 7113e7122.
Supplementary data related to this article can be found online at
[27] C. Binda, F. Hubalek, M. Li, Y. Herzig, J. Sterling, D.E. Edmondson, A. Mattevi,
Crystal structures of monoamine oxidase B in complex with four inhibitors of
the N-propargylaminoindan class, J. Med. Chem. 47 (2004) 1767e1774.
[28] GRID, in, Molecular Discovery Ltd., Pinner, Middlesex, UK.
References
[1] M.B.H. Youdim, D. Edmondson, K.F. Tipton, The therapeutic potential of
monoamine oxidase inhibitors, Nat. Rev. Neurosci. 7 (2006) 295e309.
[2] L.W. Elmer, J.M. Bertoni, The increasing role of monoamine oxidase type B
inhibitors in Parkinson’s disease therapy, Expert Opin. Pharmacother. 9 (2008)
2759e2772.
[3] J. Saura, J.M. Luque, A.M. Cesura, M. Da Prada, V. Chan-Palay, G. Huber,
J. Loffler, J.G. Richards, Increased monoamine oxidase B activity in plaque-
associated astrocytes of Alzheimer brains revealed by quantitative enzyme
radioautography, Neuroscience 62 (1994) 15e30.
[29] P.J. Goodford,
A computational procedure for determining energetically
favorable binding sites on biologically important macromolecules, J. Med.
Chem. 28 (1985) 849e857.
[30] R.C. Wade, Solvation of the active site of cytochrome P450-cam, J. Comput.
Aided Mol. Des. 4 (1990) 199e204.
[31] R.H. Henchman, J.A. McCammon, Structural and dynamic properties of water
around acetylcholinesterase, Protein Sci. 11 (2002) 2080e2090.
[32] G.J. Kleywegt, M.R. Harris, J.-y. Zou, T.C. Taylor, A. Wahlby, T.A. Jones, The
Uppsala electron-density server, Acta Crystallogr. Sect. D: Biol. Crystallogr. 60
(2004) 2240e2249.
[4] M.J. Kumar, D.G. Nicholls, J.K. Andersen, Oxidative a-ketoglutarate dehydro-
genase inhibition via Subtle Elevations in monoamine oxidase B levels results
in loss of spare respiratory capacity: implication for Parkinson’s disease, J. Biol.
Chem. 278 (2003) 46432e46439.
[33] P. Emsley, K. Cowtan, Coot: model-building tools for molecular graphics, Acta
Crystallogr. Sect. D: Biol. Crystallogr. 60 (2004) 2126e2132.
[34] Schrödinger Suite, in, Schrödinger, LLC, New York, NY, USA.
[35] W. Sherman, T. Day, M.P. Jacobson, R.A. Friesner, R. Farid, Novel procedure for
modeling ligand/receptor induced fit effects, J. Med. Chem. 49 (2006) 534e553.
[36] R.T. Kroemer, A. Vulpetti, J.J. McDonald, D.C. Rohrer, J.-Y. Trosset,
F. Giordanetto, S. Cotesta, C. McMartin, M. Kihlen, P.F.W. Stouten, Assessment
of docking poses: interactions-based accuracy classification (IBAC) versus
crystal structure deviations, J. Chem. Inf. Comput. Sci. 44 (2004) 871e881.
[37] D. Yusuf, A.M. Davis, G.J. Kleywegt, S. Schmitt, An alternative method for the
evaluation of docking performance: RSR vs RMSD, J. Chem. Inf. Model. 48
(2008) 1411e1422.
[5] J.J. Chen, D.M. Swope, K. Dashtipour, Comprehensive review of rasagiline,
a second-generation monoamine oxidase inhibitor, for the treatment of Par-
kinson’s Disease, Clin. Ther. 29 (2007) 1825e1849.
[6] R.G. Fariello, Safinamide, Neurotherapeutics 4 (2007) 110e116.
[7] F. Chimenti, E. Maccioni, D. Secci, A. Bolasco, P. Chimenti, A. Granese, O. Befani,
P. Turini, S. Alcaro, F. Ortuso, M.C. Cardia, S. Distinto, Selective inhibitory
activity against MAO and molecular modeling studies of 2-thiazolylhydrazone
derivatives, J. Med. Chem. 50 (2007) 707e712.
[8] W.K. Hagmann, The many roles for fluorine in medicinal chemistry, J. Med.
Chem. 51 (2008) 4359e4369.
[38] P. Kallblad, R.L. Mancera, N.P. Todorov, Assessment of multiple binding modes
in ligandeprotein docking, J. Med. Chem. 47 (2004) 3334e3337.
[39] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein,
Comparison of simple potential functions for simulating liquid water, J. Chem.
Phys. 79 (1983) 926e935.
[40] D.A. Gibson, E.A. Carter, Time-reversible multiple time scale ab initio molec-
ular dynamics, J. Phys. Chem. 97 (1993) 13429e13434.
[41] J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, Numerical integration of the
[9] K.L. Kirk, Fluorine in medicinal chemistry: recent therapeutic applications of
fluorinated small molecules, J. Fluorine Chem. 127 (2006) 1013e1029.
[10] D.E. Edmondson, C. Binda, J. Wang, A.K. Upadhyay, A. Mattevi, Molecular and
mechanistic properties of the membrane-bound mitochondrial monoamine
oxidases, Biochem. (Mosc.) 48 (2009) 4220e4230.
[11] C. Binda, J. Wang, L. Pisani, C. Caccia, A. Carotti, P. Salvati, D.E. Edmondson,
A. Mattevi, Structures of human monoamine oxidase
B complexes with
selective noncovalent inhibitors: safinamide and coumarin analogs, J. Med.
Chem. 50 (2007) 5848e5852.
cartesian equations of motion of
a system with constraints: molecular
dynamics of n-alkanes, J. Comput. Phys. 23 (1977) 327e341.
[42] T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N.log(N) method for
Ewald sums in large systems, J. Chem. Phys. 98 (1993) 10089e10092.
[43] W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, J. Mol.
Graph. 14 (1996) 33e38, 27e38.
[44] Desmond Molecular Dynamics System, D.E Shaw Research, New York, NY,
2008.
[45] D.E. Edmondson, C. Binda, A. Mattevi, Structural insights into the mechanism
of amine oxidation by monoamine oxidases A and B, Arch. Biochem. Biophys.
464 (2007) 269e276.
[12] J. Kirchmair, S. Distinto, D. Schuster, G. Spitzer, T. Langer, G. Wolber,
Enhancing drug discovery through in silico screening: strategies to increase
true positives retrieval rates, Curr. Med. Chem. 15 (2008) 2040e2053.
[13] W.J. Geldenhuys, A.S. Darvesh, M.O. Funk, C.J. Van der Schyf, R.T. Carroll,
Identification of novel monoamine oxidase B inhibitors by structure-based
virtual screening, Bioorg. Med. Chem. Lett. 20 (2010) 5295e5298.
[14] F. Chimenti, D. Secci, A. Bolasco, P. Chimenti, A. Granese, S. Carradori,
E. Maccioni, M.C. Cardia, M. Yanez, F. Orallo, S. Alcaro, F. Ortuso, R. Cirilli,
R. Ferretti, S. Distinto, J. Kirchmair, T. Langer, Synthesis, semipreparative HPLC
separation, biological evaluation, and 3D-QSAR of hydrazothiazole derivatives
as human monoamine oxidase B inhibitors, Bioorg. Med. Chem. 18 (2010)
5063e5070.
[46] C. Binda, M. Li, F. Hubálek, N. Restelli, D.E. Edmondson, A. Mattevi, Insights
into the mode of inhibition of human mitochondrial monoamine oxidase B