Please do not adjust margins
ChemComm
Page 4 of 6
COMMUNICATION
Journal Name
Scheme 2 Proposed mechanism for the L3Au+-catalyzed
6
a) Comprehensive Heterocyclic Chemistry III, ed. A.
DOI: 10.1039/D0CC01238F
transformation of 1a to 2a
proton from the N atom in intermediate
carbon of the allenyl moiety followed by intramolecular
cyclization delivers intermediate undergoes sequential
.
Furan, ed. J. Alvarez-Builla, J. J. Vaquero and J. Barluenga,
Wiley-VCH, 2011; c) Heterocycles in Life and Society: An
Introduction to Heterocyclic Chemistry, Biochemistry and
Applications, ed. A. F. Pozharskii, A. R. Katritzky and A. T.
Soldatenkov, Wiley, 2nd edn, 2011.
B
to the central
F. F
deprotonation and protodeauration also gives 2a (path b).
7
8
a) B. H. Lipshutz, Chem. Rev., 1986, 86, 795; b) M. Shipman,
Contemp. Org. Synth., 1995,
2, 1; c) J. Kaschel, T. F.
Schneider, D. Kratzert, D. Stalke and D. B. Werz, Angew.
Chem., Int. Ed., 2012, 51, 11153.
Conclusions
a) A. Reichstein, S. Vortherms, S. Bannwitz, J. Tentrop, H.
Prinz and K. Müller, J. Med. Chem., 2012, 55, 7273; b) L. Qin,
In summary,
a bifunctional phosphine ligand-enabled gold(I)-
catalyzed direct cycloisomerization of alkynyl ketones to access 2,5-
disubstituted furans has been successfully achieved. The reaction
has characteristic advantages of broad functional group tolerance,
high yields, and no need for additional bases. The rational design of
a biphenyl-2-ylphosphine ligand (L3) featuring a critical remote
tertiary amine moiety is a key factor for the effectiveness of the
gold(I) catalyst.
D.-D. Vo, A. Nakhai, C. D. Andersson and M. Elofsson, ACS
Comb. Sci., 2017, 19, 370; c) H. M. L. Davies and J. R. Maning,
Nature, 2008, 451, 417; d) R. P. Singh, B. M. Foxman and L.
Deng, J. Am. Chem. Soc., 2010, 132, 9558; e) J. Salihila, L.
Silva, H. P. del Pulgar, A. Q. Molina, A. González-Coloma, A. S.
Olmeda, J. F. Q. del Moral and A. F. Barrero, J. Org. Chem.,
2019, 84, 6886.
9
a) F. A. Kucherov, L. V. Romashov, K. J. Galkin and V. P.
Ananikov, ACS Sustainable Chem. Eng., 2018, 6, 8064; b) L.
Zhou, D. Xu, H. Gao, C. Zhang, F. Ni, W. Zhao, D. Cheng, X. Liu
Conflicts of interest
There are no conflicts to declare.
and A. Han, J. Org. Chem., 2016, 81, 7439.
10 a) For review articles on the synthesis of furans, see: a) R. C.
D. Brown, Angew. Chem., Int. Ed., 2005, 44, 850; b) S. F.
Kirsch, Org. Biomol. Chem., 2006, 4, 2076; b) N. T. Patil and Y.
Yamamoto, ARKIVOC, 2007, 121; c) X. L. Hou, H. Y. Cheung, T.
Y. Hon, P. L. Kwan, T. H. Lo, S. Y. Tong and H. N. C. Wong,
Tetrahedron, 1998, 54, 1955; d) T. L. Gilchrist, J. Chem. Soc.,
Perkin Trans. 1, 1999, 2849; e) B. A. Keay, Chem. Soc. Rev.,
1999, 28, 209; f) X.-L. Hou, Z. Yang, K.-S. Yeung and H. N. C.
Wong, Prog. Heterocycl. Chem., 2008, 19, 176; g) G. Balme, D.
Bougssi and N. Monteiro, Heterocycles, 2007, 73, 87; h) D. M.
Acknowledgments
We are grateful to the Natural Science Foundation of China
(Grant No. 21772176 and 21372201) and Zhejiang Province
(Grant No. LY20B020013) for financial support. Y. L. thanks the
China Scholarship Council for a scholarship for visiting UCSB.
D’Souza and T. J. J. Müller, Chem. Soc. Rev., 2007, 36, 1095.
11 a) I. Kondolff, H. Doucet and M. Santelli, J. Mol. Catal. Chem.,
2007, 269, 110; b) N.-N. Li, Y.-L. Zhang, S. Mao, Y.-R. Gao, D.-
D. Guo and Y.-Q., Wang, Org. Lett., 2014, 16, 2732; c) .
Notes and references
12 a) J. A. Marshall and E. D. Robinson, J. Org. Chem., 1990, 55
,
1
Selected reviews on the homogeneous gold-catalyzed
reactions, see: a) Modern Gold Catalyzed Synthesis (Eds.: A. S.
K. Hashmi and F. D. Toste), Wiley-VCH, Weinheim, 2012; b)
Gold Catalysis: A Homogeneous Approach (Eds.: F. D. Toste
and V. Michelet), Imperial College Press, London, 2014.
a) P. Kamer and P. W. N. M. van Leeuwen, Phosphorus(III)
Ligands in Homogeneous Catalysis: Design and Synthesis,
Wiley, 2012; b) Z. Lu, G. B. Hammond and B. Xu, Acc. Chem.
Res., 2019, 52, 1275; c) D. J. Grorin, B. D. Sherry and F. D.
Toste, Chem. Rev. 2008, 108, 3351.
3450; b) J. A. Marshall and X.-J. Wang, J. Org. Chem., 1991,
56, 960; c) J. A. Marshall and C. A. Sehon, J. Org. Chem., 1995,
60, 5966; d) A. S. K. Hashmi, Angew. Chem., Int. Ed., 1995, 34
1581; e) A. S. K. Hashmi, T. L. Ruppert, T. Knofel and J. W.
Bats, J. Org. Chem., 1997, 62, 7295; f) A. S. K. Hashmi, L.
Schwarz, J.-H. Choi and T. M. Frost, Angew. Chem., Int. Ed.,
2000, 39, 2285; g) C.-Y. Zhou, P. W. H. Chan and C.-M. Che,
,
2
Org. Lett., 2006, 8, 325; h) A. V. Kel’in and V. Gevorgyan, J.
Org. Chem., 2002, 67, 95; i) H. Sheng, S. Lin and Y. Huang,
Tetrahedron Lett., 1986, 27, 4893; j) A. Jeevanandam, K.
Narkunan, C. Cartwright and Y.-C. Ling, Tetrahedron Lett.,
1999, 40, 4841; k) A. Jeevanandam, K. Narkunan and Y.-C.
Ling, J. Org. Chem., 2001, 66, 6041; l) A. W. Sromek, M.
3
4
5
a) N. Marion and S. P. Nolan, Chem. Soc. Rev., 2008, 37, 1776;
b) S. P. Nolan, Acc. Chem. Res., 2011, 44, 91; c) S. Gaillard, C.
S. J. Cazin and S. P. Nolan, Acc. Chem. Res., 2012, 45, 778.
a) R. Martin and S. L. Buchwald, Acc. Chem. Res., 2008, 41
,
Rubina and V. Gevorgyan, J. Am. Chem. Soc., 2005, 127
,
1461; b) P. Ruiz-Castillo and S. L. Buchwald, Chem. Rev., 2016,
116, 12564.
10500; m) A. S. Dudnik, Y. Xia, Y. Li, V. Gevorgyan, J. Am.
Chem. Soc., 2010, 132, 7645; n) J. Zhang and H.-G. Schmalz,
Angew. Chem., Int. Ed., 2006, 45, 6704; o) G. Li, X. Huang and
L. Zhang, J. Am. Chem. Soc., 2008, 130, 6944; p) G. Zhang, X.
a) Y. Wang, Z. Wang, Y. Li, G. Wu, Z. Cao and L. Zhang, Nature
Commun., 2014, 5, 3470; b) X. Li, S. Liao, Z. Wang and L.
Zhang, Org. Lett., 2017, 19, 3687; c) Z. Wang, C. Hervieu, Y.-F.
Huang, G. Li and L. Zhang, J. Am. Chem. Soc., 2008, 130, 1814;
q) W. Zhang, Y. Wei and M. Shi, Chem. Commun., 2019, 55
Wong, G. Zanoni and L. Zhang, J. Am. Chem. Soc., 2017, 139
16064; d) T. Li and L. Zhang, J. Am. Chem. Soc., 2018, 140
17439; e) Z. Wang, Y. Wang and L. Zhang, J. Am. Chem. Soc.
2014, 136, 8887; f) X. Li, Z. Wang, X. Ma, P.-N. Liu and L.
Zhang, Org. Lett., 2017, 19, 5744; g) H. Wang, T. Li, Z. Zheng
,
,
,
8126; r) S. Agasti, T. Pal, T. K. Achar, S. Maiti, D. Pal, S.
Mandal, K. Daud, G. K. Lahiri and D. Maiti, Angew. Chem., Int.
Ed., 2019, 58, 11039; s) Y. Xiao and J. Zhang, Angew. Chem.,
Int. Ed., 2008, 47, 1903; t) C. Song, L. Ju, M. Wang, P. Liu, Y.
Zhang, J. Wang and Z. Xu, Chem. Eur. J., 2013, 19, 3584; u) J.
Qi, Q. Teng, N. Thirupathi, C.-H. Tung and Z. Xu, Org. Lett.
2019, 21 , 692-695.
and L. Zhang, ACS Catal., 2019,
Wang, C. D. Quintanilla and L. Zhang, J. Am. Chem. Soc., 2019
141, 3787; i) Z. Wang, A. Ying, Z. Fan, C. Hervieu and L. Zhang,
ACS. Catal., 2017, , 3676; j) X. Li, X. Ma, Z. Wang, P.-N. Liu
and L. Zhang, Angew. Chem. Int. Ed., 2019, 58, 17180.
9, 10339; h) X. Cheng, Z.
,
7
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins