Organometallics
Communication
a later stage of the reaction, the proton transfer step slows down,
and the actinide alkoxide species D will start the Tishchenko
reaction cycle, affording the homocoupled ester. In the presence
of the sacrificial ketone TFMAP, because of its preferable affinity,
TFMAP will outcompete with aldehydes during the coordination
step to the actinide species B, and subsequent hydride transfer
will give rise to α-(trifluoromethyl)benzyl alcoholate actinide
compounds, which then undergo proton transfer with alcohols to
furnish back the active species A (Scheme 1).
In summary, we have demonstrated the ability of organo-
actinides to undergo a tandem proton-transfer esterification.
This reaction can be applied to various combinations of
aldehydes and alcohols. The steric and electronic properties of
these two substrates play a crucial role in determining the
efficiency of the catalysts. In the presence of the sacrificial ketone
α,α,α-trifluoromethylacetophenone, homocoupled symmetrical
ester byproducts can be prevented, giving rise exclusively to
unsymmetrical esters.
(13) Cheng, J.; Zhu, M.; Wang, C.; Li, J.; Jiang, X.; Wei, Y.; Tang, W.;
Xue, D.; Xiao, J. Chem. Sci. 2016, 7, 4428−4434.
(14) De Sarkar, S.; Grimme, S.; Studer, A. J. Am. Chem. Soc. 2010, 132,
1
(
3
(
1
(
190−1191.
15) Grigg, R.; Mitchell, T. R. B.; Sutthivaiyakit, S. Tetrahedron 1981,
7, 4313−4319.
16) Hoshimoto, Y.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2011,
33, 4668−4671.
17) Curran, S. P.; Connon, S. J. Angew. Chem., Int. Ed. 2012, 51,
10866−10870.
(18) Andrea, T.; Eisen, M. S. Chem. Soc. Rev. 2008, 37, 550−567.
(19) Barnea, E.; Eisen, M. S. Coord. Chem. Rev. 2006, 250, 855−899.
(20) Arnold, P. L. Chem. Commun. 2011, 47, 9005−9010.
(21) Hayton, T. W. Chem. Commun. 2013, 49, 2956−2973.
(22) Evans, W. J.; Mueller, T. J.; Ziller, J. W. J. Am. Chem. Soc. 2009,
1
31, 2678−2686.
23) Cooper, O.; Camp, C.; Pec
Gambarelli, S.; Mazzanti, M. J. Am. Chem. Soc. 2014, 136, 6716−6723.
24) Wang, J.; Gurevich, Y.; Botoshansky, M.; Eisen, M. S. J. Am. Chem.
Soc. 2006, 128, 9350−9351.
25) Barnea, E.; Andrea, T.; Kapon, M.; Berthet, J.-C.; Ephritikhine,
(
́
aut, J.; Kefalidis, C. E.; Maron, L.;
(
(
ASSOCIATED CONTENT
Supporting Information
M.; Eisen, M. S. J. Am. Chem. Soc. 2004, 126, 10860−10861.
■
(
(
26) Weiss, C. J.; Marks, T. J. Dalton Trans. 2010, 39, 6576−6588.
27) Weiss, C. J.; Wobser, S. D.; Marks, T. J. Organometallics 2010, 29,
*
S
6
(
(
308−6320.
28) Lin, Z.; Marks, T. J. J. Am. Chem. Soc. 1987, 109, 7979−7985.
29) Arnold, P. L.; Turner, Z. R. Nat. Rev. Chem. 2017, 1, 0002.
Experimental details, characterization data, kinetic rate
laws, thermodynamic studies, and deuterium-labeling
(30) Wobser, S. D.; Marks, T. J. Organometallics 2013, 32, 2517−2528.
(31) Batrice, R. J.; Kefalidis, C. E.; Maron, L.; Eisen, M. S. J. Am. Chem.
Soc. 2016, 138, 2114−2117.
(
32) Andrea, T.; Barnea, E.; Eisen, M. S. J. Am. Chem. Soc. 2008, 130,
2
454−2455.
AUTHOR INFORMATION
■
(33) Sharma, M.; Andrea, T.; Brookes, N. J.; Yates, B. F.; Eisen, M. S. J.
Am. Chem. Soc. 2011, 133, 1341−1356.
34) Karmel, I. S. R.; Fridman, N.; Tamm, M.; Eisen, M. S.
Organometallics 2015, 34, 2933−2942.
35) Gardner, B. M.; Stewart, J. C.; Davis, A. L.; McMaster, J.; Lewis,
(
ORCID
(
Notes
The authors declare no competing financial interest.
W.; Blake, A. J.; Liddle, S. T. Proc. Natl. Acad. Sci. U. S. A. 2012, 109,
9265−9270.
(36) Karmel, I. S. R.; Fridman, N.; Eisen, M. S. Organometallics 2015,
3
4, 636−643.
37) Karmel, I. S. R.; Khononov, M.; Tamm, M.; Eisen, M. S. Catal. Sci.
Technol. 2015, 5, 5110−5119.
38) Hayes, C. E.; Sarazin, Y.; Katz, M. J.; Carpentier, J.-F.; Leznoff, D.
(
ACKNOWLEDGMENTS
■
This work was supported by the Israel Science Foundation
administered by the Israel Academy of Science and Humanities
under Contract No. 78/14 and by the PAZY Foundation Fund
(
B. Organometallics 2013, 32, 1183−1192.
(39) Fox, A. R.; Bart, S. C.; Meyer, K.; Cummins, C. C. Nature 2008,
455, 341−349.
(
2015) administered by the Israel Atomic Energy Commission.
(
40) Karmel, I. S. R.; Fridman, N.; Tamm, M.; Eisen, M. S. J. Am. Chem.
Soc. 2014, 136, 17180−17192.
41) Haynes, W. M. CRC Handbook of Chemistry and Physics, 96th ed.;
CRC Press: Boca Raton, FL, 2015−2016; pp 9−69.
42) In the actinide amido complex mediated Tishchenko reactions, an
N(SiMe ) α-substituted ester compound was formed in the beginning
H.L. thanks the Technion-Guangdong Fellowship Program.
(
REFERENCES
■
(
(
1) Ekoue-Kovi, K.; Wolf, C. Chem. - Eur. J. 2008, 14, 6302−6315.
2) Tang, S.; Yuan, J.; Liu, C.; Lei, A. Dalton Trans. 2014, 43, 13460−
(
3
2
1
3470.
of the catalytic cycle. Please see ref 40.
43) Dudnik, A. S.; Weidner, V. L.; Motta, A.; Delferro, M.; Marks, T. J.
Nat. Chem. 2014, 6, 1100−1107.
44) The structure of species A was verified using theoretical
approaches. Please see ref 31.
(
(
(
3) Lerebours, R.; Wolf, C. J. Am. Chem. Soc. 2006, 128, 13052−13053.
4) Maki, B. E.; Scheidt, K. A. Org. Lett. 2008, 10, 4331−4334.
5) Finney, E. E.; Ogawa, K. A.; Boydston, A. J. J. Am. Chem. Soc. 2012,
(
(
1
34, 12374−12377.
6) Whittaker, A. M.; Dong, V. M. Angew. Chem., Int. Ed. 2015, 54,
312−1315.
7) Rueping, M.; Sunden, H.; Hubener, L.; Sugiono, E. Chem.
Commun. 2012, 48, 2201−2203.
8) Tormakangas, O. P.; Koskine, A. M. P. Recent Res. Devel. Organic
Chem. 2001, 5, 225−255.
9) Berberich, H.; Roesky, P. W. Angew. Chem., Int. Ed. 1998, 37,
(
1
(
(
̈
̈
(
1
(
569−1571.
10) Seki, T.; Nakajo, T.; Onaka, M. Chem. Lett. 2006, 35, 824−829.
11) Ralston, K. J.; Hulme, A. N. Synthesis 2012, 44, 2310−2324.
12) Omura, S.; Fukuyama, T.; Murakami, Y.; Okamoto, H.; Ryu, I.
(
(
Chem. Commun. 2009, 6741−6743.
D
Organometallics XXXX, XXX, XXX−XXX