12454 J. Am. Chem. Soc., Vol. 120, No. 48, 1998
Yokoi et al.
Scheme 1
Table 1. Electrochemical and Photophysical Data of Sensitizers
and Radicals
red
E
1/2
E
s
-∆G
q
a
b
(
V vs SCE) (eV) (eV)
Sensitizers
,2,4,5-tetracyanobenzene (TCB)
,4-dicyanobenzene (DCB)
1
1
1
-0.65c
3.80c 1.7
d
d
-1.60
4.27
0.7
0.6
,4-dicyano-2,5-dimethylbenzene
-1.75e
-1.90e
3.89f
(
DMDCB)
,4-dicyano-2,3,5,6-tetramethylbenzene
TMDCB)
-cyanonaphthalene (CN)
,4-dicyanonaphthalene (DCN)
1
3.74f
0.3
(
decarboxylations10 in the presence of hydrogen donors, carban-
ion formation has never been intended in these studies.
-1.98dd
d
1
1
3.88
3.45
3.04
2.86
0.4
0.7
0.0
0.5
-1.28
8c,11
g
Direct photolysis of carboxylate anions produces carbanions,
9-cyanoanthracene (CA)
9,10-dicyanoanthracene (DCA)
-1.58
-0.89d
but their spectroscopic observation has been achieved only for
carbanions stabilized by electron-withdrawing substituents (e.g.,
p-nitrobenzyl anion)12 or by resonance with a carbonyl group.
Radicals
13
-1.40h
p-chlorobenzyl
p-methoxybenzyl
diphenylmethyl
R-naphthylmethyl
h
14
-1.82
During our study on the redox reactions of neutral radicals,
i
-1.14
-1.27
it has been elucidated that the reduction of benzylic radicals by
cyanoaromatic radical anions proceeds quite efficiently under
appropriate conditions. Thus, we tried to generate carbanions
via photosensitized decarboxylations. The strategy is to use
j
a
Redox potentials obtained at room temperature in CH
3
CN. b Est-
1
9
mated from Rehm-Weller relationship based on the assumption that
ox
-
18
c
d
e
E
1/2 (RCO
2
) is 1.5 V vs SCE.
From ref 17b. From ref 17c. From
i
-
+
carboxylate salts (RCO2 M ) in aprotic solvents in order to
ref 14. From ref 17d. From ref 17a. h From ref 23b. From ref 23a.
f
g
-
produce basic carbanions (R ). Fast and efficient carbanion
j
From ref 23c.
formation would be expected under appropriate conditions in
the photochemical redox reaction, as shown in Scheme 1. Four
elementary steps are involved here: (i) the excitation of an
electron-accepting sensitizer, (ii) the one-electron oxidation of
carboxylate ion, (iii) the decarboxylation of the carboxyl radical,
and (iv) the electron transfer from sensitizer radical anion to
the resulting carbon-centered radical.
relationship19 to be high for all sensitizers (i.e., -∆Gq g 0, as
listed in the last column in Table 1). Here, solvent effects were
neglected since the potential shifts in the sensitizers may be
-
mostly canceled by the ones in RCO2 .
For the mechanistic analysis of the present study, four criteria
•
should be satisfied: (i) the reduction potential of R should be
We report here that the predicted reaction sequence of Scheme
known and should not be too negative, (ii) the resulting
1
is operative and carbanions are observable spectroscopically.
-
carbanion R should be observable in the visible range, (iii)
-
•
•
It is shown that the electron transfer from Sens to R occurs
efficiently within the geminate radical ion pair (in-cage).
the absorption spectrum of the carboxylate anion itself should
not overlap with that of the sensitizer, and (iv) the decarboxy-
•
lation of RCO2 should take place “instantaneously”. While the
Results and Discussion
decarboxylation is not so fast for primary alkyl, alkenyl, alkynyl,
2
0,21
Conditions for the Sensitized Photooxidations of Car-
and aryl carboxyls,
those of benzylic carboxyls proceed very
-
12
-10
22
boxylate Ions. We examined the photosensitized one-electron
fast on the time scale of 10 -10
s.
The benzylic
-
oxidation of carboxylate ions (RCO2 ) in aprotic solvents in
carboxylates employed here are listed in Chart 1, for which the
reduction potentials of corresponding benzyl radicals are known
order to develop a novel method of carbanion formation.
Solvents used were tetrahydrofuran (THF) and benzene; aceto-
nitrile (MeCN) could not be employed since it forms complexes
2
3
•
(Table 1). The one-electron reductions of R by sensitizer
radical anions, the key step iv in Scheme 1, are expected to
depend on the free energy changes (-∆G) for the electron
transfer, which can be estimated from the difference in one-
with crown ethers1 and has acidic methyl protons. Sensitizers
5
16
employed are listed in Table 1, together with their singlet exci-
red
14,17
•
tation energies (Es) and reduction potentials (E1/2 ) in MeCN.
electron reductions between R and sensitizer (eq 2).
Efficiencies of electron-transfer quenching of excited sensitizers
ox
∆G ) -E1/2 (sens) + E1/2red(R•)
red
by carboxylate anions (E1/2 ) +1.7-1.8 V vs NHE in MeCN
-
(2)
1
8
for R ) alkyl) could be evaluated from the Rehm-Weller
(
10) (a) Tossaint, O.; Capdevielle, P.; Maumy, M. Tetrahedron 1984,
(18) Eberson, L. AdV. Phys. Org. Chem. 1982, 18, 79-185.
4
0, 3229-3233. (b) Saito, I.; Ikehara, H.; Kasatani, R.; Watanabe, M.;
(19) (a) Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259-271. (b) Weller,
A. Z. Phys. Chem. (Wiesbaden) 1982, 133, 93-98.
Matsuura, T. J. Am. Chem. Soc. 1986, 108, 3115-3117. (c) Okada, K.;
Okamoto, K.; Oda, M. J. Am. Chem. Soc. 1988, 110, 8736-8738. (d)
Hasebe, M.; Tsuchiya, T. Tetrahedron Lett. 1988, 29, 6287-6290.
(20) (a) Chateauneuf, J.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc.
1988, 110, 2877-2885. (b) Chateauneuf, J.; Lusztyk, J.; Ingold, K. U. J.
Am. Chem. Soc. 1988, 110, 2886-2893. (c) Yamauchi, S.; Hirota, N.;
Takahara, S.; Misawa, H.; Sawabe, K.; Sakuragi, H.; Tokumaru, K. J. Am.
Chem. Soc. 1989, 111, 4402-4407. (d) Korth, H. G.; Chateauneuf, J.;
Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 1990, 110, 5929-5931. (e)
Korth, H. G.; Chateauneuf, J.; Lusztyk, J.; Ingold, K. U. J. Org. Chem.
1991, 56, 2405-2410.
(
11) (a) Coyle, J. D. Chem. ReV. 1978, 78, 97-123. (b) Meiggs, T. O.;
Miller, S. I. J. Am. Chem. Soc. 1972, 94, 1989-1996. (c) Meiggs, T. O.;
Grossweiner, L. I.; Miller, S. I. J. Am. Chem. Soc. 1972, 94, 7981-7986.
(
12) Margerum, J. D. J. Am. Chem. Soc. 1965, 87, 3772-3773.
(13) Mart ´ı nez, J. L.; Scaiano, J. C. J. Am. Chem. Soc. 1997, 119, 11066-
1
1070.
(
14) Ishiguro, K.; Nakano, T.; Shibata, H.; Sawaki, Y. J. Am. Chem.
Soc. 1996, 118, 7255-7264.
15) Gokel, G. W.; Cram, D. J.; Liotta, C. L.; Harris, H. P.; Cook, F. L.
(21) Hillborn, J. W.; Pincock, J. A. J. Am. Chem. Soc. 1991, 113, 2683-
2686.
(
(22) (a) Falvey, D. E.; Schuster, G. B. J. Am. Chem. Soc. 1986, 108,
7419-7421. (b) Bockman, T. M.; Hubig, S. M.; Kochi, J. K. J. Org. Chem.
1997, 62, 2210-2221.
(23) (a) Wayner, D. D. M.; McPhee, D. J.; Griller, D. J. Am. Chem.
Soc. 1988, 110, 132-137. (b) Sim, B. A.; Milne, P. H.; Griller, D.; Wayner,
D. D. M. J. Am. Chem. Soc. 1990, 112, 6635-6638. (c) Milne, P. H.;
Wayner, D. D. M.; DeCosta, D. P.; Pincock, J. A. Can. J. Chem. 1992, 70,
121-127.
J. Org. Chem. 1974, 39, 2445-2446.
(
16) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456-463.
(
17) (a) Eriksen, J.; Foote, C. S. J. Phys. Chem. 1978, 82, 2659-2662.
(
b) Mattes, S. L.; Farid, S. Org. Photochem. 1983, 6, 233-236. (c)
Kavarnos, G. J.; Turro, N. J. Chem. ReV. 1986, 86, 401-449. (d) Suzuki,
M.; Ikeno, T.; Osoda, K.; Narasaka, K.; Suenobu, T.; Fukuzumi, S.; Ishida,
A. Bull. Chem. Soc. Jpn. 1997, 70, 2267-2277.