9878
J. Am. Chem. Soc. 2000, 122, 9878-9879
Reactions of Diazirines with Aluminum Chloride:
Lewis Acid-Mediated Carbene Generation and
Friedel-Crafts Reactions
Robert A. Moss,* Jean-Marie Fede´, and Shunqi Yan
Department of Chemistry, Rutgers
The State UniVersity of New Jersey
New Brunswick, New Jersey 08903
ReceiVed June 19, 2000
ReVised Manuscript ReceiVed August 23, 2000
3-Substituted diazirinium ions (1) are possible intermediates
in the Graham (hypochlorite) oxidation of amidines to 3-chloro-
3-substituted diazirines (2).1,2 Despite their superficial resemblance
to the aromatic cyclopropenyl cations, however, computational
studies of the stability of 1 are equivocal,3 and the experimental
evidence is not encouraging.2,4 Thus, treatment of 2 (R ) MeO),
or the corresponding bromide, with AgNO3, AlBr3, SbF5, AlCl3,
AgF, H2SO4, or FSO3H failed to provide spectroscopic or
chemical evidence for 1.2 Related failures were reported for
diazirine 3,4b,c while the “diazirine exchange” reactions5 of, e.g.,
2 and 3, initially attributed to the intermediacy of 1,6 have been
reinterpreted as SN2′ 4c-e,7 or SRN14c,8,9 reactions.
Figure 1. B3LYP/6-31G* potential energy profile for the AlCl3
conversion of 4 (R ) i-Pr) to i-PrOCCl. Calculations are for the gas
phase with zero point energy and thermal corrections. Arabic numerals
refer to energies (kcal/mol); italic numerals indicate bond lengths (Å).
where the products were tert-amylbenzene or a 73:27 mixture of
s-butylbenzene and n-butylbenzene, respectively. In the case of
R ) PhCH2, the absolute yield of 5 was ∼40%, based on 4; the
balance of the material was nonvolatile. Products were identified
by GC and GC-MS comparisons with authentic samples, and no
reactions occurred in the absence of AlCl3 (UV, TLC, HPLC).
An obvious formulation of these reactions involves chloride
abstraction from 4 by AlCl3, yielding an unstable alkoxydiaz-
irinium ion (1, R ) RO), which fragments to R+, CO, and N2,
with subsequent alkylation of benzene by R+. However, B3LYP/
6-31G* computational studies11 fail to locate a AlCl3/Cl abstrac-
tion transition state for 4 (R ) i-Pr or Me). Instead, a transition
state proceeding from AlCl3 attack on a diazirine nitrogen atom
is readily found. Figure 1 illustrates the ensuing molecular
processes and energy relationships for 4 (R ) i-Pr). As computed
in the gas phase, N/Al interaction affords a diazirine/AlCl3
complex with 13.7 kcal/mol stabilization. C-N bond breaking
then requires ∼14.0 kcal/mol of activation energy via TS1
(transition states exhibited 1 negative vibrational frequency),
leading exothermally (net, -4.0 kcal/mol) to an AlCl3 complex
of isopropyloxychlorodiazomethane, the linear isomer of 4.12 Loss
of nitrogen from the latter via TS2 (Ea ) 6.6 kcal/mol) then
affords isopropyloxychlorocarbene with a net exothermicity of
∼6.5 kcal/mol. A very similar sequence of steps is also computed
to convert 4 (R ) Me) to MeOCCl.
Here, we describe the chemical consequences of reacting
various diazirines with AlCl3 in benzene. The resulting Friedel-
Crafts reactions provide new insights into the decomposition
pathways available to these protean molecules.
Reactions of alkoxychlorodiazirines (4)10 with ∼30% excess
AlCl3 in dry benzene (25 °C, dark, 20-30 min) afforded
alkylbenzenes (5) in >95% purity; eq 1. The R groups of 4
included isopropyl, cyclopentyl, cyclohexyl, benzyl, neopentyl,
and n-butyl. Rearrangements were observed in the latter two cases,
(1) Graham, W. H. J. Am. Chem. Soc. 1965, 87, 4396.
(2) Moss, R. A.; Wlostowska, J.; Guo, W.; Fedorynski, M.; Springer, J.
P.; Hirshfield, J. M. J. Org. Chem. 1981, 46, 5048.
(3) (a) Hoffman, R. Tetrahedron 1966, 22, 539. (b) Pittman, C. U., Jr.;
Kress, A.; Patterson, T. B.; Watson, P.; Kispert, L. D. J. Org. Chem. 1974,
39, 373. (c) Krogh-Jerspersen, K. Tetrahedron Lett. 1980, 21, 4553. (d) Krogh-
Jespersen, K.; Young, C. M.; Moss, R. A.; Wlostowski, M. Tetrahedron Lett.
1982, 23, 2339.
(4) (a) Padwa, A.; Eastman, D. J. Org. Chem. 1969, 34, 2728. (b) Creary,
X.; Sky, A. F. J. Org. Chem. 1988, 53, 4637. (c) Creary, X. Acc. Chem. Res.
1992, 25, 31. (d) Dailey, W. P. Tetrahedron Lett. 1987, 28, 5801. (e)
Bainbridge, K. E.; Dailey, W. P. Tetrahedron Lett. 1989, 20, 4901.
(5) Moss, R. A. In Chemistry of Diazirines; Liu, M. T. H., Ed.; CRC
Press: Boca Raton, FL, 1987; Vol. I, p 99.
(6) Moss, R. A.; Terpinski, J.; Cox, D. P.; Denney, D. Z.; Krogh-Jespersen,
K. As a diazirinium cation/anion pair. In J. Am. Chem. Soc. 1985, 107, 2743.
Moss, R. A. Acc. Chem. Res. 1989, 22, 15.
(7) Alcaraz, G.; Baceiredo, A.; Nieger, M.; Bertrand, G. J. Am. Chem. Soc.
1994, 116, 2159.
(8) Creary, X. J. Org. Chem. 1993, 58, 7700. Creary, X.; Sky, A. F.;
Phillips, G.; Alonso, D. E. J. Am. Chem. Soc. 1993, 115, 7584.
(9) Moss, R. A.; Xue, S.; Liu, W. J. Am. Chem. Soc. 1994, 116, 10821.
(10) Diazirines 4 were produced from the appropriate isouronium salts,
see ref 1, and: Moss, R. A.; Ge, C.-S.; Maksimovic, L. J. Am. Chem. Soc.
1996, 118, 9792. Moss, R. A.; Johnson, L. A.; Merrer, D. C.; Lee, G. E., Jr.
J. Am. Chem. Soc. 1999, 121, 5940. For isouronium salts, see: Moss, R. A.;
Kaczmarczyk, G. M.; Johnson, L. A. Synth. Commun. 2000, 30, 3233.
According to this scenario, the function of the AlCl3 is simply
to catalyze the loss of nitrogen from 4, affording the alkoxychlo-
rocarbene, ROCCl. When R provides a moderately stable R+,
ROCCl readily fragments to R+, CO, and Cl-.13 Therefore, the
(11) (a) All optimizations utilized Gaussian94 Revision E.2 using default
convergence criteria: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P.
M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson,
G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrezewski,
V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;
Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-
Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Pittsburgh, PA, 1995.
(b) DFT calculations used Becke’s three-parameter hybrid method using the
LYP correlation functional: Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(12) This step is supported by an intrinsic reaction coordinate calculation
which connects the diazirine/AlCl3 complex, TS1, and the diazoalkane/AlCl3
complex. Note the rehybridization of N(1) in this process.
(13) (a) Moss, R. A. Acc. Chem. Res. 1999, 32, 969. (b) Yan, S.; Sauers,
R. R.; Moss, R. A. Org. Lett. 1999, 1, 1603 and references therein.
10.1021/ja002174m CCC: $19.00 © 2000 American Chemical Society
Published on Web 09/22/2000