B. Hatano et al. / Tetrahedron Letters 43 (2002) 5859–5861
5861
or trifluoromethanesulfonic acid, and the reaction is
considered to proceed via a hydride transfer mechanism
from a bis(diarylmethyl) ether 4 intermediate.12 Conse-
quently, we consider the present disproportionation to
proceed through the intramolecular hydrogen transfer
of 4 to give alkane 2 and ketone 3. During the pro-
cesses, supercritical water not only works as a reaction
medium but also accelerates the reaction.
5. For examples of organic synthesis using high-temperature
water: (a) Ikushima, Y.; Hatakeda, K.; Sato, O.;
Yokoyama, T.; Arai, M. Angew. Chem., Int. Ed. 2001, 40,
210; (b) Bro¨ll, D.; Kaul, C.; Kra¨mer, A.; Krammer, P.;
Richter, T.; Jung, M.; Vogel, H.; Zehner, P. Angew.
Chem., Int. Ed. 1999, 38, 2998; (c) Ikushima, Y.;
Hatakeda, K.; Sato, O.; Yokoyama, T.; Arai, M. Angew.
Chem., Int. Ed. 1999, 38, 2910; (d) Sato, O.; Ikushima,
Y.; Yokoyama, T. J. Org. Chem. 1998, 63, 9100; (e) Junk,
T.; Catallo, W. J. Tetrahedron Lett. 1996, 37, 3445; (f)
Yao, J.; Evilia, R. F. J. Am. Chem. Soc. 1994, 116, 11229.
6. Another type of disproportionation in supercritical water,
i.e. Cannizzaro-type disproportionation, has been
reported in the previous study.5a,b
7. A typical procedure is as follows: in a tubular steel bomb
reactor (10 mL) were placed diphenylmethanol 1a (368
mg, 2.0 mmol) and water (3.0 mL) under argon atmo-
sphere and kept at 435°C for 90 min in a sand bath. After
the reactor was cooled to room temperature in a water
bath, water (20 mL) and ethyl acetate (30 mL) were
added to the resulting mixture, and the two liquid layers
were separated. The organic layer was washed with brine
(20 mL), dried over Na2SO4, and concentrated. The
residue was purified by column chromatography on silica
gel (30 g; eluent, petroleum ether:chloroform=50:0, 48:2,
46:4, 44:6, 42:8, 40:10, 35:15, 30:20, 25:25, and 0:50, each
×50 mL), giving 2a (162 mg, 0.96 mmol) and 3a (168 mg,
0.92 mmol) in the yields as shown in Table 1, entry 1.
8. The ion product value (−log Kw) was calculated by water
density and reaction temperature. For reference see: (a)
Wagner, W.; Kruse, A. Properties of Water and Steam;
Springer-Verlag: Berlin–New York–Tokyo, 1998; (b)
Marshall, W. L.; Franck, E. U. J. Phys. Chem. Ref. Date
1981, 10, 295.
In conclusion, we have developed a novel dispropor-
tionation of diarylmethanol derivatives and diaryl-
methylamine derivatives. In supercritical water, this
disproportionation proceeds under neutral conditions
efficiently. Although the present method can be applied
only to limited substrates, this report reveals the syn-
thetic utility of supercritical water as a reaction
medium. More detailed study on the reaction mecha-
nism as well as other synthetic applications of supercrit-
ical water are now in progress.
References
1. For recent reviews on green chemistry: (a) Green Chem-
istry Theory and Practice; Anastas, P. T.; Warner, J.,
Eds.; Oxford University Press: Oxford, 1998; (b) Green
Chemistry: Frontiers in Benign Chemical Syntheses and
Processes; Anastas, P. T.; Williamson, T. C., Eds.;
Oxford University Press: Oxford, 1998; (c) Tanaka, K.;
Toda, F. Chem. Rev. 2000, 100, 1025; (d) Varma, R. S.
Green Chem. 1999, 1, 43; (e) Epple, M. Chem. Ing. Tech.
1999, 71, 35; (f) Loupy, A.; Petit, A.; Hamelin, J.; Texier-
Boullet, F.; Jacquault, P.; Mathe, D. Synthesis 1998,
1213; (g) Sato, K.; Aoki, M.; Takagi, J.; Noyori, R.;
Bianchini, C.; Barbaro, P. Chemtracts 1998, 11, 629.
2. (a) High-Temperature Aqueous Solution: Thermodynamic
Properties; Fernandes, P. R. J.; Corti, H. R.; Japer, M.
L., Eds.; CRC: Boca Raton, 1992; (b) Shaw, R. W.; Brill,
T. B.; Clifford, A. A.; Eckert, C. A.; Franck, E. U. Chem.
Eng. News 1991, 69, 26; (c) Haar, L.; Gallagher, J. S.;
Kell, G. S. NBC/NRC Wasserdampftafeln; Springer:
Heidelberg, 1988; pp. 19–214; (d) To¨dheide, K. In
Water—a Comprehensive Treatise; Franks, F., Ed.;
Plenum: New York, 1972; Vol. 1, p. 514.
3. (a) Hirth, T.; Franck, E. U. Chem. Ing. Tech. 1994, 66,
1355; (b) Tester, J. W.; Holgate, H. R.; Armellini, F. J.;
Webley, P. A.; Killilea, W. R.; Hong, G. T.; Barner, H.
E. In Emerging Technologies for Hazardous Waste Man-
agement III; Tedder, D. W.; Pohland, F. G., Eds.; Amer-
ican Chemical Society: Washington, DC, 1993; Vol. 518,
Chapter 3; (c) Schilling, W.; Franck, E. U. Ber. Bunsen-
Ges. Phys. Chem. 1988, 92, 631.
4. For recent reviews on organic reactions in high-tempera-
ture water: (a) Katritzky, A. R.; Nichols, D. A.; Siskin,
M.; Murugan, R.; Balasubramanian, M. Chem. Rev.
2001, 101, 873; (b) Savage, P. E. Chem. Rev. 1999, 99,
603.
9. Savage and co-worker described the effect of water den-
sity on the dehydration of cyclohexanol. Reference:
Akiya, N.; Savage, P. E. Int. Eng. Chem. Res. 2001, 40,
1822.
10. In the case of 1f, the disproportionated products could
not be separated by chromatography on silica gel, and
1
the yields of 2f and 3f were determined by H NMR with
1,1,2,2-tetrachloroethane as an internal standard.
11. Antal, M. J.; Brittain, A.; DeAlmeida, C.; Ramayya, S.;
Roy, J. C. ACS Symp. Ser. 1987, 329, 77.
12. (a) Waterlot, C.; Couturier, D.; Backer, M. D.; Rigo, B.
Can. J. Chem. 2000, 78, 1242; (b) Gautret, P.; El-Gham-
marti, S.; Legrand, A.; Couturier, D.; Rigo, B. Synth.
Commun. 1996, 26, 707; (c) Heinisch, G. Bull. Soc. Chem.
Belg. 1992, 101, 579; (d) Heinisch, G.; Waglechner, R. J.
Heterocyclic Chem. 1984, 21, 1727; (e) Heinisch, G.;
Luszczak, E.; Pailer, M. Monatsh. Chem. 1974, 105, 763;
(f) Bartlett, P. D.; McCollum, J. D. J. Am. Chem. Soc.
1956, 78, 1441; (g) Burton, H.; Cheeseman, G. W. H. J.
Chem. Soc. 1953, 986; (h) Balfe, M. P.; Kenyon, J.;
Thain, E. M. J. Chem. Soc. 1952, 790; (i) Kny-Jones, F.
G.; Ward, A. M. J. Chem. Soc. 1930, 535.