February 1998
SYNLETT
165
In conclusion, we have found an approach towards the longstanding
problem of cleaving the amide bond. Since this transformation can be
accomplished in the presence of various functionality, a greater use of
amides as amine and carboxylic acid protecting groups may develop.
Secondary and tertiary amides can be converted to highly electrophilic
imino or iminium triflates using a stoichiometric amount of triflic
anhydride and pyridine. These species can be used to generate alkyl
imino esters and alkyl iminium esters which are readily converted to
esters. Further studies on the mechanism, scope and limitations of this
reaction are underway. The use of other nucleophiles is also being
studied and will be reported in due course.
8.
Oxazolines can alkylated to give rise to iminium esters:
(a) Deslongchamps, P.; Lebreux, C.; Taillefer, R. Can. J. Chem.,
1973, 51, 1665-1669. (b) Smith, M. B.; Shroff, H. N. J. Org.
Chem., 1984, 49, 2900-2906.
9.
(a) Roberts, V. A.; Stewart, J. D.; Benkovic, S. J.; Getzoff, E. D.
J. Mol. Biology, 1994, 235, 1098-1116. (b) Stewart, J. D.; Roberts,
V. A.; Thomas, N. R.; Getzoff, E. D.; Benkovic, S. J.
Biochemistry, 1994, 33, 1994-2003.
1
0. (a) Falmagne, J. B.; Escudero, J.; Taleb-Saharaoui, S.; Ghosez, L.
Angew. Chem. Int. Ed. Engl., 1981, 20, 879-880. (b) Barbaro, G.;
Battaglia, A.; Bruno, C.; Giorgianni, P.; Guerrini, A. J. Org.
Chem., 1996, 61, 8480-8488. For a review on triflic anhydride,
see: (c) Ritter, K. Synthesis, 1993, 735-762. (d) Stang, P. J.;
Hanack, M.; Subramanian, L. R. Synthesis, 1982, 85-126.
Acknowledgments. This research was supported by the Natural Science
and Engineering Research Council (NSERC) of Canada, Alfred P.
Sloan Foundation, Servier Canada, F.C.A.R. (Québec), and the
Université de Montréal. A FCAR predoctoral fellowship to P.C. is also
gratefully acknowledged.
1
1. (a) Sisti, N. J.; Fowler, F. W.; Grierson, D. S. Synlett, 1991, 816-
818. (b) Sisti, N. J.; Zeller, E.; Grierson, D. S.; Fowler, F. W.
J. Org. Chem., 1997, 62, 2093-2097.
1
1
2. Thomas, E. W. Synthesis, 1993, 767-768.
References and Notes
3. Methanol could be used instead of ethanol with equally good
results. Amide in entry 1 was converted to the corresponding
methyl ester in identical yield.
1
.
(a) Buehler, C. A.; Pearson, D. E. Survey of Organic Syntheses,
Vol. 1; Wiley: New York, 1970, p 751. and 1977, vol. 2, p 660
(
b) B. C. Challis, J. A. Challis, in The Chemistry of Amides: The
14. (a) Martin, J. C.; Franz, J. A. J. Am. Chem. Soc., 1975, 97, 6137-
Chemistry of Functional Groups (Ed.: J. Zabicky), Wiley
Interscience: New York, 1970, p 816.
6
(
144. (b) Kuehne, M. E. J. Am. Chem. Soc., 1961, 83, 1492-1498.
c) Sonnet, P. E. J. Org. Chem., 1982, 47, 3793-3796.
5. Typical procedure: N,N-Diethyl hydrocinnamide (205 mg, 1.0
2.
For selected examples of syntheses which required the removal of
simple amides using vigorous conditions, see (a) Kende, A. S.;
Bentley, T. J.; Draper, R. W.; Jenkins, J. K.; Joyeux, M.; Kubo, I.
Tetrahedron Lett., 1973, 14, 1307-1310 (b) Corey, E. J.;
Balanson, R. D. J. Am. Chem. Soc., 1974, 96, 6516-6517 (c) Ben-
Ishai, D.; Altman, J.; Peled, N. Tetrahedron, 1977, 33, 2715-2717.
1
mmol), CH Cl2 (5 ml) and pyridine (245 µl 3.0 mmol) were
2
combined in a dry 25 ml flask under argon. The resulting solution
was cooled to -40 °C and then neat triflic anhydride (220 µl, 1.3
mmol) was added slowly to the solution. Following completion of
the addition of triflic anhydride, the reaction mixture was allowed
to warm up with stirring to 0 °C slowly (approximately 2 hours)
and then stirred at 0 °C for another 10 hours. Ethanol (2 ml, >30
mmol) was then added and the reaction was allowed to warm up
to room temperature. Stirring was continued for another 12 hours.
3
.
(a) Anelli, P. L.; Brocchetta, M.; Palano, D.; Visigalli, M.
Tetrahedron Lett., 1997, 2367-2368. b) Fisher, L. E.; Caroon, J.
M.; Stabler, S. R.; Lundberg, S.; Zaidi, S.; Sorensen, C. M.;
Sparacino, M. L.; Muchowski, J. M. Can. J. Chem., 1994, 72,
142-145. (c) Greenlee, W. J.; Thorsett, E. D. J. Org. Chem., 1981,
The reaction was then diluted with 120 ml of Et O and washed
2
46, 5351-5353.
once with 1 N HCl (25 ml), twice with NaHCO (saturated) and
3
dried over Na SO . The solvent was removed in vacuo and flash
4
.
.
Hamilton, D. J.; Price, M. J. Chem. Commun., 1969, 414.
2
4
chromatography afforded
167 mg (94%) of ethyl
5
(a) Gassman, P. G.; Hodgson, P. K. G.; Balchunis, R. J. J. Am.
Chem. Soc., 1976, 98, 1275-1276. (b) Tsunoda, T.; Sasaki, O.; Ito,
S. Tetrahedron. Lett., 1990, 31, 731-734.
hydrocinnamate. Reaction times could be shortened for specific
cases (ie. equally high yields could be obtained for the cleavage of
N,N-diethyl hydrocinnamide if the reaction was stirred only for 2
hours at 0 °C before the addition of ethanol, and only 4 hours
after).
6.
(a) White, E. H. J. Am. Chem. Soc., 1955, 77, 6008-6010 and
6011-6014 and 6014-6021. (b) A novel approach has been
recently disclosed for the hydrolysis of secondary amides through
a selective nitrosation and a subsequent mild hydrolysis of the N-
nitrosyl secondary amide, see Evans, D. A.; Carter, P. H.;
Dinsmore, C. J.; Barrow, J. C.; Katz, J. L.; King, D. W.
Tetrahedron Lett., 1997, 38, 4535-4538.
1
6. For an elegant method for the selective hydrolysis of primary
amides in the presence of esters. see: Eschenmoser, A.; Wintner,
C. E. Science 1977, 196, 1410-1420 and references therein.
1
7. (a) Triflic anhydride and triethylamine has been reported to
dehydrate aldoximes: Hendrickson, J. B.; Bair, K. W.; Keehn, P.
M. Tetrahedron Lett., 1976, 603-604. (b) Dehydration of primary
amides have been demonstrated with other reagents many times in
the past. See Campagna, F.; Carotti, A.; Casini, G. Tetrahedron
Lett., 1977, 21, 1813-1816 and references therein.
7
.
(a) Okuyama, T.; Sahn, D. J.; Schmir, G. L. J. Am. Chem. Soc.,
1973, 95, 2345-2352. (b) Pletcher, T. C.; Koehler, S.; Cordes, E.
H. J. Am. Chem. Soc., 1968, 90, 7072-7076. (c) Hanessian, S.
Tetrahedron Lett. 1967, 8, 1549-1552. (d) Schmir, G. L.;
Cunningham, B. A. J. Am. Chem. Soc., 1965, 87, 5692-5701.