2
346
J. McNulty et al. / Tetrahedron Letters 50 (2009) 2342–2346
Klupers, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653; (n) Aranyos, A.;
2 3
(dba)
)8b through oxidative addition as well as from
sources (Pd
Pd(II) sources (Pd(TFA)
8c
Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem.
Soc. 1999, 121, 4369; (o) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41,
2
). However, in the work of Gibson
8
b
et al., 4-chloroacetophenone did not react with phenylboronic
acid compared with 80% conversion (Table 2, entry 15) with the
present dtbpx system. These workers also showed that the di-
tert-butylphosphinotolyl palladacycle was effective in the coupling
of 4-chlorobenzaldehyde to phenylboronic acid. The available evi-
dence on the presently reported reactivity of Pd-complexes of
dtbpx 1 in the carbonylative and Suzuki-Miyaura cross-coupling
reactions is consistent with the involvement of a doubly ortho-
metalated bimetallic Pd(II) complex of 1 formed in situ from
1461; (p) Fu, G. C. Acc. Chem. Res. 2008, 41, 1555; (q) Billingsley, K.; Buchwald,
S. L. J. Am. Chem. Soc. 2007, 129, 3358.
4.
(a) Portnoy, M.; Milstein, D. Organometallics 1993, 12, 1665; (b) Hills, I.
D.; Netherton, M. R.; Fu, G. C. Angew. Chem., Int. Ed. 2003, 42, 5749; (c)
Galardon, E.; Ramdeehul, S.; Brown, J. M.; Cowley, A.; Hii, K.; Jutand, A.
Angew. Chem., Int. Ed. 2002, 41, 1760; (d) Tschoerner, M.; Pregosin, P. S.;
Albinati, A. Organometallics 1999, 18, 670; Alcazar-Roman, L. M.; Hartwig,
J. F. J. Am. Chem. Soc. 2001, 123, 12905; (e) Clarke, M. L.; Heydt, M.
Organometallics 2005, 24, 6475.
5. (a) Meerwin, R. K.; Schnabel, R. C.; Koola, J. D.; Roddick, D. M. Organometallics
992, 11, 2972; (b) Brown, J. M.; Guiry, P. J. Inorg. Chim. Acta 1994, 220, 249; (c)
Mann, G.; Shelby, Q.; Roy, A. H.; Hartwig, J. F. Organometallics 2003, 22, 2775;
d) Culkin, D. A.; Hartwig, J. F. Organometallics 2004, 23, 3398.
1
8
a
Pd(OAc)
2
.
Nonetheless, Suzuki–Miyaura cross-coupling reactions
(
0
normally proceed via Pd -mediated catalytic cycles raising ques-
6. (a) Eastham, G. R.; Tooze, R. P.; Kilner, M.; Foster, D. F.; Cole-Hamilton, D. J. J.
Chem. Soc., Dalton Trans 2002, 1613; (b) Jimenez-Rodriguez, C.; Foster, D. F.;
Eastham, G. R.; Cole-Hamilton, D. J. Chem. Commun 2004, 1720; (c) Rucklidge,
A. J.; Eastham, G. R.; Cole-Hamilton, D. J. Int. Pat, WO2004050599, 2004; (d)
Rucklidge, A. J.; Morris, G. E.; Slawin, A. M. Z.; Cole-Hamilton, D. J. Helv. Chim.
Acta 2006, 89, 1783; (e) Jimenez-Rodriguez, C.; Eastham, G. R.; Cole-Hamilton,
D. J. Inorg. Chem. Commun. 2005, 8, 878; (f) Ooka, H.; Inoue, T.; Itsuno, S.;
Tanaka, M. Chem. Commun. 2005, 1173.
tions as to the nature of the catalytic cycle. Similar questions were
raised on the Heck reaction using related Pd(II) complexes.8c Work
is currently in progress to identify the formation and involvement
of such a species in the present system.
8
a
In summary, we have demonstrated the efficacy of dtbpx 1 in
palladium-catalysed carbonylative and Suzuki–Miyaura cross-cou-
pling. A range of electron-rich and electron-deficient aryl as well as
vinyl substrates are tolerated in hydroxy-, alkoxy- and aminocarb-
onylation reactions, while aryl chlorides and triflates are more
problematic. The scope of the Suzuki–Miyaura reaction with dtbpx
is shown to be quite broad with, in addition to aryl iodides and bro-
mides, activated aryl chlorides readily entering the catalytic cycle;
and deactivated aryl chlorides to a lesser extent. Further study into
the scope of cross-coupling and the nature of the active catalyst
system in the present case is in progress.
7.
Jimenez-Rodriguez, C.; Pogorzelec, P. J.; Eastham, G. R.; Slawin, A. M. Z.; Cole-
Hamilton, D. J. J. Chem. Soc., Dalton Trans. 2007, 4160.
8.
(a) Clegg, W.; Eastham, G. R.; Elsegood, M. R. J.; Tooze, R. P.; Wang, X. L.;
Whiston, K. W. Chem. Commun. 1999, 1877; (b) Gibson, S.; Foster, D. F.;
Eastham, G. R.; Tooze, R. P.; Cole-Hamilton, D. J. Chem. Commun. 2001, 779; (c)
Ohff, M.; Ohff, A.; van der Boom, M. E.; Milstein, D. J. Am. Chem. Soc. 1997, 119,
1
1687.
(a) Tremblay, J. F. Chemical Engineering News, November 17th, 2008, Vol. 86, p.
(b) New MMA Technology, European Chemical News, October 30th–
November 5th, 2000, p. 20.
9.
8;
1
1
1
1
0. Eastham, G. R.; Heaton, B. T.; Iggo, J. A.; Tooze, R. P.; Whyman, R.; Zacchini, S.
Chem. Commun. 2000, 609.
1. Jimenez-Rodriguez, C.; Eastham, G. R.; Cole-Hamilton, D. J. J. Chem. Soc., Dalton
Trans. 2005, 1826.
2. Morris, D. J.; Docherty, G.; Woodward, G.; Wills, M. Tetrahedron Lett. 2007, 48,
Acknowledgements
949.
3. (a) Beller, M.; Magerlein, W.; Indolese, A. F.; Fischer, C. Synthesis 2001, 1098;
(b) Magerlein, W.; Indolese, A. F.; Beller, M. Angew. Chem., Int. Ed. 2001, 40,
2856; (c) Magerlein, W.; Indolese, A. F.; Beller, M. J. Organomet. Chem. 2002,
We thank NSERC, Cytec Canada Inc. and McMaster University
for financial support of this work.
6
41, 330.
1
4. Sample procedure for carbonylative cross coupling: Synthesis of butyl 4-
methylbenzoate (Table 1, entry 1). 4-Iodotoluene (100.0 mg, 0.459 mmol),
palladium (II) acetate (2.6 mg, 0.0114 mmol) and bis(di-tert-butylphosphino)-
o-xylene (9.0 mg, 0.0229 mmol) were added consecutively to a steel reactor in
a glove box under nitrogen, followed by 1 ml dry DMF (2 ml/mmol), butanol
References and notes
1
.
(a) Adjabeng, G.; Brenstrum, T.; Wilson, J.; Frampton, C. S.; Robertson, A. J.;
Hillhouse, J.; McNulty, J.; Capretta, A. Org. Lett. 2003, 5, 953; (b) Ohnmacht, S.
A.; Brenstrum, T.; Bleicher, K. H.; McNulty, J.; Capretta, A. Tetrahedron Lett.
2 3
(84 ll, 0.917 mmol) and Cs CO (22.4 mg, 0.688 mmol). The reactor was then
2
004, 45, 5661; (c) Adjabeng, G.; Brenstrum, T.; Frampton, C. S.; Robertson, A. J.;
sealed, removed from the glove box and connected via Swage line to a mini
cylinder of CO. After three purges, the reactor was pressurised to 40 psi,
submerged in an oil bath set at 80 °C and stirred via an internal magnet. After
ꢀ8 h, TLC (10% EtOAc/Hex) indicated the reaction to be complete. The mixture
Hillhouse, J.; McNulty, J.; Capretta, A. J. Org. Chem. 2004, 69, 5082; (d)
Brenstrum, T.; Gerritsma, D. A.; Adjabeng, G.; Frampton, C. S.; Robertson, A. J.;
Hillhouse, J.; McNulty, J.; Capretta, A. J. Org. Chem. 2004, 69, 5082; (e)
Brenstrum, T.; Clattenburg, J.; Britten, J.; Zavorines, S.; Dyck, J.; Robertson, A. J.;
McNulty, J.; Capretta, A. Org. Lett. 2006, 8, 103.
was diluted with 2 ml saturated NH
4
Cl, extracted with ethyl acetate (3 ꢁ 5 ml),
the combined organic fractions dried over anhydrous Na
2
4
SO , filtered and
2
.
.
(a) McNulty, J.; Capretta, A.; Wilson, J.; Dyck, J.; Adjabeng, G.; Robertson, A. J.
Chem. Commun. 2002, 1986; (b) Gerritsma, D. A.; Robertson, A. J.; McNulty, J.;
Capretta, A. Tetrahedron Lett. 2004, 45, 7629–7631; (c) McNulty, J.; Cheekoori,
S.; Nair, J. J.; Larichev, V.; Capretta, A.; Robertson, A. J. Tetrahedron Lett. 2005, 46,
concentrated under vacuum into an amorphous residue which was
chromatographed (10% EtOAc/Hex) on silica to give butyl 4-methylbenzoate
in 95% yield. 1H NMR (CDCl
, 200 MHz); d(ppm): 7.93 (2H, d, J = 8.0 Hz), 7.22
(2H, d, J = 8.0 Hz), 4.30 (2H, t, J = 6.0, 6.0 Hz), 2.40 (3H, s), 1.74 (2H, m), 1.47
(2H, m), 0.97 (3H, t, J = 7.3, 7.3 Hz). 13C NMR (CDCl
, 50 MHz); d (ppm): 166.8
3
3
641; (d) McNulty, J.; Nair, J. J.; Cheekoori, S.; Larichev, V.; Capretta, A.;
3
Robertson, A. J. Chem. Eur. J. 2006, 12, 9314; (e) McNulty, J.; Cheekoori, S.;
Bender, T. P.; Coggan, J. A. Eur. J. Org. Chem. 2007, 9, 1423; (f) McNulty, J.; Nair, J.
J.; Robertson, A. J. Org. Lett. 2007, 9, 4575.
(s), 143.4 (s), 129.6 (2 ꢁ d), 129.0 (2 ꢁ d), 127.8 (s), 64.6 (t), 30.8 (t), 21.6 (q),
+
19.3 (t), 13.8 (q). CIMS 70 eV, m/z (rel. int.): 193 [M+1] (20), 136 (46), 119
(100), 91 (30).
3
(a) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999,
15. General procedure for Suzuki–Miyaura cross-coupling reaction: The aryl halide
(1 mmol), boronic acid (1.2 mmol), palladium acetate (0.02 mmol), bis(di-tert-
121, 9550; (b) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J. J.; Buchwald, S. L. J.
Org. Chem. 2000, 65, 1158; (c) Streiter, E. R.; Blackmond, D. G.; Buchwald, S. L. J.
Am. Chem. Soc. 2003, 125, 13978; (d) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem.
Soc. 2000, 122, 4020; (e) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37,
3 4
butylphosphino)-o-ylene (0.02 mmol) and K PO -monohydrate (2 mmol) were
weighed into a reaction vial in a glove box under nitrogen. The vial was then
capped, removed from the glove box and flushed with argon (3 cycles). Dry
degassed THF (1.5 ml) was introduced and the mixture stirred under argon at
3
387; (f) Littke, A. F.; Fu, G. C. J. Org. Chem. 1999, 64, 10; (g) Hartwig, J. F.;
Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.; Alcazar-Roman, L. M. J. Org.
Chem. 1999, 64, 5575; (h) Nishiyama, M.; Yamamoto, T.; Koie, Y. Tetrahedron.
Lett. 1998, 39, 617; (i) Leadbeater, N. E. Chem. Commun. 2005, 2881; (j) Wolfe, J.
P.; Buchwald, S. L. J. Org. Chem. 1996, 61, 9550; (k) Wolfe, J. P.; Buchwald, S. L. J.
Org. Chem. 2000, 65, 1144; (l) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am.
Chem. Soc. 1998, 120, 9722; (m) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.;
rt for 48 h. After this time, the solution was diluted with 3 ml saturated NH
and extracted with 5 ml ethyl acetate (3 times), the combined organic layers
were dried (Na SO ), filtered and solvent removed under vacuum. The biaryl
products were purified by flash chromatography (10% EtOAc/hexane) on silica
gel.
4
Cl
2
4