behaves as independent luminophores.17 Switching from
Zn(II) to Ni(II) results in slight quenching of the emission
due to the presence of the paramagnetic metal ions, yet the
emission maximum and shape remain almost unchanged.
Emission from the Zn(II) capsule displayed greater oxygen
sensitivity than free ligand 2: in aerated solutions, emission
from 1Zn was quenched by 46% whereas that from 2 was only
quenched by 19%.18
5 There are a few exceptions where Pt(II)-linked coordination cages show
strong emission from the large aromatic subunits: (a) M. Busi,
M. Laurenti, G. G. Condorelli, A. Motta, M. Favazza,
I. L. Fragala, M. Montalti, L. Prodi and E. Dalcanale, Chem.–Eur.
J., 2007, 13, 6891–6898; (b) S. Ghosh and P. S. Mukherjee, Organo-
metallics, 2008, 27, 316–319.
6 (a) M. Kessinger and J. Michl, Excited States and Photochemistry
of Organic Molecules, VCH, New York, 1995; (b) N. J. Turro,
Modern Molecular Photochemistry, Benjamin, Menlo Park, 1978.
7 (a) S. Yamaguchi, S. Akiyama and K. Tamao, J. Am. Chem. Soc.,
2001, 123, 11372–11375; (b) K. Suzuki, A. Seno, H. Tanabe and
K. Ueno, Synth. Met., 2004, 143, 89–96; (c) A. Petitjean,
R. G. Khoury, N. Kyritsakas and J.-M. Lehn, J. Am. Chem.
Soc., 2004, 126, 6637–6647; (d) W. J. Yang, D. Y. Kim,
M.-Y. Jeong, H. M. Kim, Y. K. Lee, X. Fang, S.-J. Jeon and
B. R. Cho, Chem.–Eur. J., 2005, 11, 4191–4198; (e) Y. H. Kim,
H. C. Jeong, S. H. Kim, K. Yang and S. K. Kwon, Adv. Funct.
Mater., 2005, 15, 1799–1805.
8 (a) M. Scherer, D. L. Caulder, D. W. Johnson and
K. N. Raymond, Angew. Chem., Int. Ed., 1999, 38, 1588–1592;
(b) M. R. Johnston, M. J. Latter and R. N. Warrener, Org. Lett.,
2002, 4, 2165–2168; (c) W. Meng, B. Breiner, K. Rissanen,
J. D. Thoburn, J. K. Clegg and J. R. Nitschke, Angew. Chem.,
Int. Ed., 2011, 50, 3479–3483.
9 N. Kishi, Z. Li, K. Yoza, M. Akita and M. Yoshizawa, submitted.
10 M2L4 coordination cages with Pd(II) ions: (a) D. A. McMorran
and P. J. Steel, Angew. Chem., Int. Ed., 1998, 37, 3295–3297;
(b) D. K. Chand, K. Biradha and M. Fujita, Chem. Commun.,
2001, 1652–1653; (c) N. L. S. Yue, D. J. Eisler, M. C. Jennings and
R. J. Puddephatt, Inorg. Chem., 2004, 43, 7671–7681;
(d) G. H. Clever, S. Tashiro and M. Shionoya, Angew. Chem.,
Int. Ed., 2009, 48, 7010–7012; (e) P. Liao, B. W. Langloss,
A. M. Johnson, E. R. Knudsen, F. S. Tham, R. R. Julian and
R. J. Hooley, Chem. Commun., 2010, 46, 4932–4934.
In summary, we have prepared metal-linked M2L4 molecular
capsules with B1 nm cavities fully enshrouded by the eight
large panels of anthracene fluorophores. In sharp contrast to
the majority of previous coordination cages and analogous
Pd(II) capsules, the Zn(II) and Ni(II) capsules are emissive with
the high and moderate quantum yields, respectively. The
emissive properties of these new molecular capsules bearing
fluorescent shells promise novel applications where supra-
molecular host–guest interactions can be used to develop
new fluorescent functional materials, sensors, and devices.
These novel fluorescent capsules are particularly attractive as
zinc is a ‘‘green’’ transition metal and the exterior functional
groups can be readily modified and elaborated.
This work was supported by the Japanese Ministry of
Education, Culture, Sports, Science and Technology (MEXT)
via Grants-in-Aid for Scientific Research on Innovative Areas
‘‘Coordination Programming’’ (Area 2107, No. 21108011) and
the global COE program (GCOE) ‘‘Education and Research
Center for Emergence of New Molecular Chemistry’’, and
the Japan Society for the Promotion of Science (JSPS) via
‘‘Funding Program for Next Generation World-Leading
Researchers’’. The authors would like to thank Dr. J. K.
Klosterman for his helpful discussions.
11 Ligand 2 was synthesized in six steps from 1,3-dimethoxybenzene
using Negishi and Suzuki–Miyaura palladium catalyzed cross-
coupling procedures (48% total yield).12 The pyridyl methoxy
groups of 2 serve as useful NMR tags to monitor the capsule
formation, as they are quite sensitive to metal coordination.
12 See ESI.w The Ni(II) capsule exhibited paramagnetic behavior as is
evident from its 1H NMR spectra. Instead, the M2L4 composition
of the capsule was determined by ESI-TOF MS analysis.
Notes and references
13 Axial ligands (L0) coordinated to the Zn(II) center (L0 = CD3CN,
TfOꢀ, and/or H2O) are omitted for clarity.
1 (a) B. Valeur, Molecular Fluorescence: Principles and Applications,
Wiley-VCH, Weinheim, 2002; (b) V. Balzani, A. Credi and
M. Venturi, Molecular Devices and Machines: Concepts and
Perspectives for the Nanoworld, Wiley-VCH, Weinheim, 2nd edn,
2008.
2 (a) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson,
A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice,
Chem. Rev., 1997, 97, 1515–1566; (b) L. Prodi, F. Bolletta,
M. Montalti and N. Zaccheroni, Coord. Chem. Rev., 2000, 205,
59–83.
3 (a) B. J. Holliday and C. A. Mirkin, Angew. Chem., Int. Ed., 2001,
40, 2022–2043; (b) S. R. Seidel and P. J. Stang, Acc. Chem. Res.,
2002, 35, 972–983; (c) F. Hof, S. L. Craig, C. Nuckolls and
J. Rebek, Jr., Angew. Chem., Int. Ed., 2002, 41, 1488–1508;
(d) D. Fiedler, D. H. Leung, R. G. Bergman and
K. N. Raymond, Acc. Chem. Res., 2005, 38, 349–358;
(e) M. Fujita, M. Tominaga, A. Hori and B. Therrien, Acc. Chem.
Res., 2005, 38, 369–378; (f) J. Rebek, Jr., Angew. Chem., Int. Ed.,
2005, 44, 2068–2078; (g) J. K. Klosterman, Y. Yamauchi and
M. Fujita, Chem. Soc. Rev., 2009, 38, 1714–1725;
(h) M. Yoshizawa, J. K. Klosterman and M. Fujita, Angew. Chem.,
Int. Ed., 2009, 48, 3418–3438.
4 (a) N. K. AI-Rasbi, C. Sabatini, F. Barigelletti and M. D. Ward,
Dalton Trans., 2006, 4769–4772; (b) K. Harano, S. Hiraoka and
M. Shionoya, J. Am. Chem. Soc., 2007, 129, 5300–5301;
(c) I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding,
L. Russo, W. Clegg and M. D. Ward, J. Am. Chem. Soc., 2008,
130, 15167–15175.
14 The methoxy groups of 1Ni were replaced with methoxyethoxy
Ni
groups in 10 to facilitate crystallization. X-Ray crystal data of
10Ni: C234H249Cl4N9Ni2O59, Mr = 4390.78, crystal dimensions
0.15 ꢁ 0.11 ꢁ 0.10 mm3, tetragonal, P4nc, a = b = 19.4133(4) A,
c = 29.968(2) A, V = 11294.4(9) A3, Z = 2, rcalcd = 1.291 g cmꢀ3
,
F(000) = 4624, radiation, l(CuKa) = 1.54187 A, T = 93(2) K,
reflections collected/unique 124 070/10 352 (Rint = 0.0448). The
structure was solved by the direct methods (SIR2004) and refined
by full-matrix least-squares methods on F2 with 745 parameters.
R1 = 0.0573 (I 4 2s(I)), wR2 = 0.1606, GOF 0.981; max/min
residual density 0.592/ꢀ0.603 eAꢀ3. CCDC 800615.
15 Octahedral coordination geometry of Zn(II)-complexes:
(a) P. Losier and M. J. Zaworotko, J. Chem. Crystallogr., 1996,
26, 277–280; (b) D. R. Turner, M. Henry, C. Wilkinson,
G. J. McIntyre, S. A. Mason, A. E. Goeta and J. W. Steed,
J. Am. Chem. Soc., 2005, 127, 11063–11074; (c) T. D. Hamilton,
D.-K. Bucar, M. B. J. Atkinson, G. S. Papaefstathiou and
L. R. MacGillivray, J. Mol. Struct., 2006, 796, 58–62.
16 J. Iwasa, K. Ono, M. Fujita, M. Akita and M. Yoshizawa, Chem.
Commun., 2009, 5746–5748.
Zn
17 The emission capability of capsule 10 bearing methoxyethoxy
groups was similar to that of 1Zn
.
18 The emission lifetime (t) of 1Zn (12 ns) is longer than that of 2
(10 ns). In the solid state, an emission spectrum (lex = 396 nm) of
capsule 1Zn showed a broadened band (lmax = 460 nm) with an
absolute quantum yield (FF) of 0.06.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 8605–8607 8607