Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C8CC05068F
COMMUNICATION
Journal Name
H2O2,19a in addition, the Co-FeMOF as the catalyst could increase
the rate of reaction. As the concentration of glucose increases, the
amount of generation NO increases (Fig. 3B). For the reaction, the
generated NO amount depends on the produced H2O2 amount, and
the latter relies on the added glucose concentration.
4
5
(a) R. M. J. Palmer, D. S. Ashton and S. Moncada, Nature, 1988, 333
,
664–666; (b) S. Kudo and Y. Nagasaki, J. Controlled Release, 2015,
217, 256–262.
55
60
65
70
75
(a) F. Yang, P. Chen, W. He, N. Gu, X. Z. Zhang, K. Fang, Y. Zhang, J. F.
Sun and J. Y. Tong, Small, 2010,
A. R. Ray, Catal. Commun., 2007,
6
, 1300–1305; (b) M. Mukherjee and
, 1431−1437. (c) M. Mukherjee,
5
8
and A. R. Ray, J. Mol. Catal. A Chem., 2007, 266, 207–214.
R. Breslow and L. E. Overman, J. Am. Chem. Soc., 1970, 92, 1075–
1077.
(a) R. Schlçgl, Angew. Chem., Int. Ed., 2015, 54, 3465−3520; (b) R.
Ragg, M. N. Tahir and W. Tremel, Eur. J. Inorg. Chem., 2016, 1906–
1915.
The stability of GOD@Co-FeMOF was measured by FL, XRD and
SEM after five cycles in 0.1 M pH 6.9 and 7.4 PBS (Fig. S13-S17),
which shows that the GOD@Co-FeMOF complex can maintain good
and stable activity, and exhibits excellent catalysis.
6
7
10
In order to demonstrate that GOD@Co-FeMOF can function as
effective catalysts for the generation of NO with endogenous
components. The serum samples obtained from rabbit were
properly diluted by 0.1 M PBS, and then mixed with the DAF-FM DA,
GOD@Co-FeMOF and L-Arg. The result shows that NO is generated
8
9
D. Wen, W. Liu, D. Haubold, C. Z. Zhu, M. Oschatz, M. Holzschuh, A.
,
Wolf, F. Simon, S. Kaskel and A. Eychmuller, ACS Nnao, 2016, 10
2559-2567.
M. B. Gawande, A. Goswami, F. X. Felpin, T. Asefa, X. Huang, R. Silva,
X. Zou, R. Zboril and R. S. Varma, Chem. Rev., 2016, 116, 3722−3811.
15when GOD@Co-FeMOF is mixed with L-Arg and serum (Fig. S18),
clearly indicating the approach could be used in complex sample to
produce NO, and has the potential to use in biomedical field.
In summary, this work designs a simple, biocompatible and
integrated tandem catalyst system based on conjugating GOD on
20Co-FeMOF. Co-FeMOF not only exhibits peroxidase-like activity but
also could be as a support for the GOD immobilization. Besides,
GOD@Co-FeMOF can drive a reaction cascade to allow for in situ
generation of NO via the oxidation of L-Arginine in physiological pH.
This process can thus allow the sustained generation of NO in the
25presence of glucose and L-Arginine, offering a potential solution to
generate NO when in contact with serum. Overall, the Co-FeMOF
bioassay described herein provides a general platform to integrate
material catalysts with enzymatic catalysts for cascade reaction
pathways under physiological pH, atmospheric pressure and
30aqueous solution conditions. Furthermore, this new method opens
an avenue for designing biosensing strategies with multifunctional
2D MOFs, and can be used in synergistic starving-like/gas therapy.
The next work is focused on reducing the size of 2D MOFs and
employing in cancer therapy.
10 (a) M. Vázquez-González, W. C. Liao, R. Cazelles, S. Wang, X. Yu, V.
Gutkin and I. Willner, ACS Nano, 2017, 11, 3247−3253; (b) S. Wang, R.
Cazelles, W. C. Liao, M. Vázquez-González, A. Zoabi, R. Abu-Reziq
and I. Willner, Nano Lett., 2017, 17, 2043–2048.
11 M. Vázquez-González, R. M. Torrente-Rodríguez, A. Kozell, W. C, Liao,
A. Cecconello, S. Campuzano, J. M. Pingarron and I. Willner, Nano
Lett., 2017, 17, 4958–4963.
12 B. W. Liu, Z. Y. Sun, P. J. J. Huang and J. W. Liu, J. Am. Chem. Soc.,
2015, 137, 1290−1295.
13 I. I. Slowing, B. G. Trewyn and V. S. Y. Lin, J. Am. Chem. Soc., 2007,
129, 8845−8849.
8014 G. Y. Tonga, Y. Jeong, B. Duncan, T. Mizuhara, R. Mout, R. Das, S. T.
Kim, Y. C. Yeh, B. Yan, S. Hou and V. M. Rotello, Nat. Chem., 2015, 7,
597−603.
15 Y. Zhang, Z. Y. Wang, X. J. Li, L. Wang, M. Yin, L. H. Wang, N. Chen, C.
H. Fan and H. Y. Song, Adv. Mater., 2016, 28, 1387−1393.
8516 (a) A. C. Marr and S. Liu, Trends Biotechnol., 2011, 29, 199–204; (b) Q.
Q. Wang, X. P. Zhang, L. Huang, Z. Q. Zhang, and S. J. Dong, Angew.
Chem., Int. Ed., 2017, 56, 1−3.
17 (a) S. Hudson, J. Cooney and E. Magner, Angew. Chem., Int. Ed., 2008,
47, 8582−8594; (b) M. Hartmann, Chem. Mater., 2005, 17,
4577−4593; (c) Z. Li and K. S. Suslick, ACS Appl. Mater. Interfaces,
2018, 10, 15820−15828; (d) Z. Li and K. S. Suslick, ACS Sens., 2018,
121−127.
18 M. Hartmann and D. J. Jung, J. Mater. Chem., 2010, 20, 844–857.
90
3,
19 (a) W. P. Fan, N. Lu, P. Huang, Y. Liu, Z. Yang, S. Wang, G. C. Yu, Y. J.
Liu, J. K. Hu, Q. J. He, J. l. Qu, T. F. Wang and X. Y. Chen, Angew.
Chem. Int. Ed., 2016, 55, 1–6; (b) Q. Sun, C. W. Fu, B. Aguila, J.
Perman, S. Wang, H. Y. Huang, F. S. Xiao and S. Q, Ma, J. Am. Chem.
Soc., 2018, 140, 984−992.
20 (a) Y. Peng, Y. S. Li, Y. J. Ban, H. Jin, W. M. Jiao, X. L. Liu and W. S.
Yang, Science, 2014, 346, 1356–1359; (b) T. Rodenas, I. Luz, G. Prieto,
B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. Llabrési Xamena and J.
Gascon, Nat. Mater., 2015, 14, 48–55. (c) M. T. Zhao, Y. X. Wang, Q.
L. Ma, Y. Huang, X. Zhang, J. F. Ping, Z. C. Zhang, Q. P. Lu, Y. F. Yu, H.
Xu, Y. L. Zhao and H. Zhang, Adv. Mat., 2015, 27, 7372–7378.
10521 (a) Y. X. Wang, M. T. Zhao, J. F. Ping, B. Chen, X. H. Cao, Y. Huang, C.
L. Tan, Q. L. Ma, S. X. Wu, Y. F. Yu, Q. P. Lu, J. Z. Chen, W. Zhao, Y. B.
Ying and H. Zhang, Adv. Mater., 2016, 28, 4149–4155; (b) M. Xu, S.
Yuan, X. Y. Chen, Y. J. Chang, G. Day, Z. Y. Gu and H. C. Zhou, J. Am.
Chem. Soc., 2017, 139, 8312−8319.
11022 L. Y. Cao, Z. K. Lin, F. Peng, W. W. Wang, R. Y. Huang, C. Wang, J. W.
Yan, J. Liang, Z. M. Zhang, T. Zhang, L. S. Long, J. L. Sun and W. B. Lin,
Angew. Chem., Int. Ed., 2016, 55, 4962–4966.
35
We gratefully acknowledge National Natural Science Foundation
of China (21705004, 21675084), Natural Science Foundation of
Anhui Province (1808085QB38) and Open Foundation of State Key
Lab of Analytical Chemistry for Life Science, Nanjing University
(SKLACLS1803).
95
100
40Conflicts of interest
There are no conflicts to declare.
Notes and references
1
2
3
(a) H. T. T. Duong, N. N. M. Adnan, N. Barraud, J. S. Basuki, S. K. Kutty,
K. Jung, N. Kumar, T. P. Davis and C. Boyer, J. Mater. Chem. B, 2014,
2, 5003–5011; (b) A. de Mel, F. Murad and A. M. Seifalian, Chem.
Rev., 2011, 111, 5742−5767.
(a) W. P. Fan, W. B. Bu, Z. Zhang, B. Shen, H. Zhang, Q. J. He, D. L. Ni,
Z. W. Cui, K. L. Zhao, J. W. Bu, J. L. Du, J. N. Liu and J. L. Shi, Angew.
Chem. Int. Ed., 2015, 54, 14026–14030; (b) H. J. Xiang, Q. Deng, L. An,115
M. Guo, S. P. Yang and J. G. Liu, Chem. Commun., 2016, 52, 148–151.
D. Hirst and T. Robson, Curr. Pharm. Des., 2010, 16, 411−420.
45
50
23 R. W. Larsen, J. Miksovska, R. L. Musselman and L. J. Wojtas, Phys.
Chem. A, 2011, 115, 11519−11524.
24 M. G. Espey, K. M. Miranda, D. D. Thomas and D. A. Wink, Free
Radical Biol. Med., 2002, 33, 827–834.
25 S. E. J. Bell, R. E. Hester, J. N. Hill, D. R. Shawcross and J. R. L Smith, J.
Chem. Soc., Faraday Trans., 1990, 86, 4017−4023.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins