DECOMPOSITION OF AMMONIUM PERCHLORATE ACTIVATED VIA ADDITION OF NiO NANOCRYSTALS
3 J. Zhi, W. Tian-Fang, L. Shu-Fen, Z. Feng-Qi, L. Zi-Ru,
the low-temperature decomposition stage occurred ini-
Y. Cui-Mei, L. Yang, L. Shang-Wen and Z. Gang-Zhui,
tially in the pores of nuclei, NiO additives could not eas-
J. Therm. Anal. Cal., 85 (2006) 315.
ily participate in the proton transfer process. As a result,
4 N. B. Singh and A. K. Ojha, Thermochim. Acta,
NiO additives have no apparent impacts on the low tem-
390 (2002) 67.
perature decomposition process.
5 G. R. Duan, X. J. Yang, J. Chen, G. H. Huang, L. Lu and
X. Wang, Power Technol., 172 (2007) 27.
6 P. R. Patil, V. N. Krishnamurthy and S. S. Joshi, Prop.
Conclusions
Explos. Pyrotech., 31 (2006) 442.
7 F. Solymosi and L. Révész, Nature, 192 (1961) 64.
8 K. C. Patil, V. R. Verneker and S. R. Jain, Combust.
Flame, 27 (1976) 295.
This work explored the thermal decomposition of AP
at high temperatures with addition of NiO nano-
crystals. NiO nanoparticles with different surface ar-
eas were achieved by annealing the Ni(OH)2 at differ-
ent temperature. With increasing surface areas, both
IR spectra and LO Raman peak showed red shift,
which is associated with the lattice expansion. NiO
nanocrystals promoted AP decomposition, in which
the catalytic activities were found to be a function of
surface area. The high-temperature decomposition
peak temperature in the presence of NiO
nanoparticles changed from 358.5 to 385.5°C with
surface areas of NiO reduced from 108.6 to 0.9 m2 g–1.
9 D. V. Survase, M. Gupta and S. N. Asthana, Prog. Crystal
Growth Charact., 45 (2002) 161.
10 R. J. Acheson and P. W. M. Jacobs, J. Phys. Chem.,
74 (1970) 281.
11 Y. X. Luo, L. D. Lu, X. H. Liu, X. J. Yang and X. Wang,
Chin. J. Inorg. Chem., 18 (2002) 1211.
12 L. J. Chen, G. S. Li and L. P. Li, J. Therm. Anal. Cal.,
91 (2008) 581.
13 Y. P. Wang, J. W. Zhu, X. J. Yang, L. Lu and X. Wang,
Thermochim. Acta, 437 (2005) 106.
14 L. P. Li, L. J. Chen, R. M. Qihe and G. S. Li, Appl. Phys.
Lett., 89 (2006) 134102.
15 L. L. Wu, Y. S. Wu, H. Y. Wei, Y. C. Shi and C. X. Hu,
Mater. Lett., 58 (2004) 2700.
16 R. E. Dietz, G. I. Parisot and A. E. Meixner, Phys. Rev.
B., 4 (1971) 2302.
Acknowledgments
17 R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan,
H. Z. Zhang, D. P. Yu and Z. Zhang, Phys. Rev. B.,
61 (2000) 16827.
This work was financially supported by NSFC under the con-
tract (No. 20773132, 20771101), National Basic Research
Program of China (973 program, No. 2007CB613306), Sci-
ence and Technology Program from Fujian Province
(No. 2005L2005 and 2006HJ0178), Directional program
(KJCX2-YW-M05) and a grant from Hundreds Youth Talents
Program of CAS (Li GS).
18 M. Rajiº and M. Suºeska, J. Therm. Anal. Cal.,
63 ( 2001) 375.
19 V. V. Boldyrev, Thermochim. Acta, 443 (2006) 1.
20 P. Politzer and P. Lane, J. Mol. Struct. (Theochem),
454 (1998) 229.
Received: August 6, 2007
References
Accepted: November 27, 2007
1 L. Bereczki, K. Marthi, P. Huszthy and G. Pokol,
J. Therm. Anal. Cal., 78 (2004) 449.
DOI: 10.1007/s10973-007-8678-3
2 Y. L. Su, S. F. Li and D. H. Ding, J. Therm. Anal. Cal.,
86 (2006) 497.
J. Therm. Anal. Cal., 92, 2008
769