LETTER
1,3-Dicarbonyl Chlorination
815
(e) Tona, M.; Guardiola, M.; Fajari, L.; Messeguer, A.
Tetrahedron 1995, 51, 10041.
Finally, it was briefly studied how α-nitro carbonyls be-
have under the chlorination conditions. The mild chlorina-
tion of those substrates might attract some interest, since
they can be considered as α-amino acid precursors.14 As
exemplary shown for the conversion of 7 into 8, chlorine
can be transferred onto the α-nitro carbonyl skeleton un-
der the reaction conditions in good yields (Scheme 4).
However, further studies on this particular substrate class
are recommended.
(3) (a) Yang, D.; Yan, Y.-L.; Lui, B.; Zhang, C. J. Org. Chem.
2002, 67, 7429. (b) Shibatomi, K.; Soga, Y.; Narayama, A.;
Fujisawa, I.; Iwasa, S. J. Am. Chem. Soc. 2012, 134, 9836.
(c) Tucker, J. W.; Narayanam, J. M. R.; Jagan, M. R.;
Krabbe, S. W.; Stephenson, C. R. J. Org. Lett. 2010, 12, 368.
(d) Curran, D. P.; Chen, M.-H.; Spletzer, E.; Seong, C. M.;
Chang, C.-T. J. Am. Chem. Soc. 1989, 111, 8872.
(4) (a) Atkins, E. F.; Dabbs, S.; Guy, R. G.; Mahomed, A. A.;
Mountford, P. Tetrahedron 1994, 50, 7253. (b) Shi, X.-X.;
Dai, L.-X. J. Org. Chem. 1993, 58, 4596. (c) Nobrega, J. A.;
Goncalves, S. M. C.; Peppe, C. Synth. Commun. 2002, 32,
3711. (d) Meketa, M. L.; Mahajan, Y. R.; Weinreb, S. M.
Tetrahedron Lett. 2005, 46, 4799. (e) Shimakoshi, H.;
Abiru, M.; Izumi, S.-I.; Hisaeda, Y. Chem. Commun. 2009,
6427. (f) Reddy, D. S.; Shibata, N.; Nagai, J.; Nakamura, S.;
Toru, T.; Kanemasa, S. Angew. Chem. Int. Ed. 2008, 47, 164.
(g) De Kimpe, N.; De Cock, W.; Schamp, N. Synthesis 1987,
188. (h) Akula, R.; Galligan, M. J.; Ibrahim, H. Synthesis
2011, 347. (i) Barluenga, J.; Martinez-Gallo, J. M.; Najera,
C.; Yus, M. Synthesis 1986, 678. (j) Bekaert, A.; Barberan,
O.; Gervais, M.; Brion, J.-D. Tetrahedron Lett. 2000, 41,
2903. (k) Jereb, M.; Zupan, M.; Stavber, S. Chem. Commun.
2004, 2614.
(5) (a) Kim, J.-J.; Kweon, D.-H.; Cho, S.-D.; Kim, H.-K.; Lee,
S.-G.; Yoon, Y.-J. Synlett 2006, 194. (b) Khan, A. T.;
Goswami, P.; Choudhury, L. H. Tetrahedron Lett. 2006, 47,
2751. (c) Ranu, B. C.; Adak, L.; Banerjee, S. Aust. J. Chem.
2007, 60, 358. (d) Dieter, R. K.; Nice, L. E.; Velu, S. E.
Tetrahedron Lett. 1996, 37, 2377. (e) For oxidative
chlorination in nature, see: Neumann, C. S.; Fujimori, D. G.;
Walsh, C. T. Chem. Biol. 2008, 15, 99.
(6) For the use of hypervalent iodine reagents as oxidants, see:
(a) Akula, R.; Galligan, M.; Ibrahim, H. Chem. Commun.
2009, 6991. (b) Lee, J. C.; Park, J. Y.; Yoon, S. Y.; Bae, Y.
H.; Lee, S. J. Tetrahedron Lett. 2004, 45, 191. (c) Coats, S.
J.; Wassermann, H. H. Tetrahedron Lett. 1995, 36, 7735.
(d) Braddock, D. C.; Cansell, G.; Hermitage, S. A. Synlett
2004, 461. (e) Ibrahim, H.; Kleinbeck, F.; Togni, A. Helv.
Chim. Acta 2004, 87, 605. (f) Galligan, M. J.; Akula, R.;
Ibrahim, H. Org. Lett. 2014, 16, 600.
(7) (a) Klimczyk, S.; Huang, X.; Farès, C.; Maulide, N. Org.
Biomol. Chem. 2012, 10, 4327. (b) Zhou, Z. S.; Li, L.; He,
X. H. Chin. Chem. Lett. 2012, 23, 1213.
(8) For reviews, see: (a) Duschek, A.; Kirsch, S. F. Angew.
Chem. Int. Ed. 2011, 50, 1524. (b) Satam, V.; Harad, A.;
Rajule, R.; Pati, H. Tetrahedron 2010, 66, 7659.
(9) (a) Kirsch, S. F. J. Org. Chem. 2005, 70, 10210. (b) Crone,
B.; Kirsch, S. F. Chem. Commun. 2006, 764. (c) Duschek,
A.; Kirsch, S. F. Chem. Eur. J. 2009, 15, 10713.
(10) Harschneck, T.; Hummel, S.; Kirsch, S. F.; Klahn, P. Chem.
Eur. J. 2012, 18, 1187.
(11) For related azidation protocols, see inter alia: (a) Magnus,
P.; Hulme, C.; Weber, W. J. Am. Chem. Soc. 1994, 116,
4501. (b) Tohma, H.; Egi, M.; Ohtsubo, M.; Wantanabe, H.;
Takizawa, S.; Kita, Y. Chem. Commun. 1998, 173. (c) Chen,
D.-J.; Chen, Z.-C. Tetrahedron Lett. 2000, 41, 7361.
(d) Magnus, P.; Lacour, J.; Weber, W. Synthesis 1998, 547.
(e) Vita, M. V.; Waser, J. Org. Lett. 2013, 15, 3246.
(12) IBX–SO3K does not react with primary and secondary
alcohols at r.t. Even at 60 °C, alkyl-substituted alcohols
remain untouched while secondary benzylic and propargylic
alcohols are prone to oxidation.
1 (3 equiv)
O
O
Cl
MeOct3N+Cl– (20 mol%)
NO2
Ph
NO2
Ph
EtO
EtO
NaCl (1 M in H2O)
THF (2:1)
7
8
(72%)
Scheme 4 Chlorination of α-nitro carbonyl compound 7. Reaction
was run at 50 °C.
In summary, a novel and operationally simple method for the
direct chlorination of several types of activated methylene
compounds (e.g., 1,3-dicarbonyls, β-keto esters, α-cyano
carbonyls and α-nitro carbonyls) has been reported.15 The
method uses, under metal-free conditions, sodium chloride
as universally available chlorine source and relies on the ox-
idation power of IBX–SO3K that was found to be mild
enough to tolerate a plethora of functional groups.10 Further
oxidative functionalization procedures making use of IBX–
SO3K will be reported in due course.
Acknowledgment
We gratefully acknowledge the opening works of Wolfgang
Heydenreuther at Technische Universität München. Research on
this project was performed at Technische Universität München and
Bergische Universität Wuppertal. This research was supported by
Deutsche Forschungsgemeinschaft (DFG).
Supporting Information for this article is available online at
ded are copies of the 1H NMR and 13C NMR spectra of compounds
4a–i, 6a–d, and 8.SuInopigfmot
rniSupratpInfigor
m
o
ti
References and Notes
(1) For selected examples, see: (a) Bi, H.-P.; Guo, L.-N.; Duan,
X.-H.; Gou, F.-R.; Huang, S.-H.; Liu, X.-Y.; Liang, Y.-M.
Org. Lett. 2007, 9, 397. (b) Loy, R. N.; Jacobsen, E. N.
J. Am. Chem. Soc. 2009, 131, 2786. (c) Yoo, W.-J.;
Miyamura, H.; Kobayashi, S. J. Am. Chem. Soc. 2011, 133,
3095. (d) Mekonnen, A.; Carlson, R. J. Org. Chem. 2006,
2005. (e) Tereda, M.; Sorimachi, K.; Uraguchi, D. Synlett
2006, 133. (f) Reddy, D. S.; Shibata, N.; Nagai, J.;
Nakamura, S.; Toru, T.; Kanemasa, S. Angew. Chem. Int.
Ed. 2008, 47, 164.
(2) (a) Meshram, H. M.; Reddy, P. N.; Vishnu, P.; Sadashiv, K.;
Yadav, J. S. Tetrahedron Lett. 2006, 47, 991. (b) Mei, Y.;
Bentley, P. A.; Du, J. Tetrahedron Lett. 2008, 49, 3802.
(c) Fletcher, D.; Ablenas, F. J.; Hopkinson, A. C.; Lee-Ruff,
E. Tetrahedron Lett. 1986, 27, 4853. (d) Dechoux, L.; Ebel,
M.; Jung, L.; Stambach, J. F. J. Org. Chem. 1993, 34, 7405.
(13) For leading reviews on phase-transfer catalysis, see:
(a) Novacek, J.; Waser, M. Eur. J. Org. Chem. 2013, 637.
(b) Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107,
© Georg Thieme Verlag Stuttgart · New York
Synlett 2014, 25, 813–816