146
NOTE
REFERENCES
TABLE 2
Average Pore Radius R(p), Specific Surface Area S, Pore Volume
V(p), and Mean Crystallite Size R(XRD) for Samples ZC0–ZC4
1. Tanabe, K., Mater. Chem. Phys. 13, 347 (1985).
2. Mercera, P. D. L., van Ommen, J. G., Doesburg, E. B. M., Burggraaf,
A. J., and Ross, J. R. H., Appl. Catal. 57, 127 (1990).
3. Chaterjee, M., Ray, J., Chaterjee, A., and Ganguli, D., Mater. Sci. Lett.
8, 548 (1989).
R(p)
(nm)
S
V(p)
R(XRD)
(nm)
Sample
(m2gꢁ1
)
(cm3gꢁ1
)
4. Ward, D. A., and Ko, E. I., J. Catal. 157, 321 (1995).
5. Davies, L., Daza, L., and Grange, P., J. Mater. Sci. 30, 5087 (1995).
6. Descemond, M., Brodhag, C., Thevenot, F., Durand, B., Jebrouni, M.,
and Roubin, M., J. Mater. Sci. 28, 2283 (1993).
7. Jebrouni, M., Durand, B., and Roubin, M., Ann. Chem. Fr. 16, 569
(1991).
ZC0
ZC1
ZC2
ZC3
ZC4
2.9
2.9
3.0
3.5
4.1
132
153
130
140
144
0.24
0.27
0.31
0.30
0.34
3.4
3.5
4.0
4.5
5.1
8. Jebrouni, M., Durand, B., and Roubin, M., Ann. Chim. Fr. 17, 143
(1992).
9. Hamon, D., Vrinat, M., Breysse, M., Durand, B., Jebrouni, M., Roubin,
M., Magnoux, P., and des Courie`res, T., Catal. Today 10, 613 (1991).
10. Hamon, D., Vrinat, M., Breysse, M., Durand, B., Beauchesne, F., and
des Courie`res, T., Bull. Soc. Chim. Belg. 100, 933 (1991).
11. Afanasiev, P., Geantet, C., and Breysse, M., J. Catal. 153, 17 (1995).
12. Geantet, C., Afanasiev, P., Breysse, M., and des Courie`res, T., in “Proc.
6th Symposium on the Scientific Bases for the Preparation of Het-
erogeneous Catalysts, Louvain-la-Neuve, 1994,” Book of Abstracts,
Vol. 1, p. 273.
13. Kerridge, D. H., and Cancela Rey, J., J. Inorg. Nucl. Chem. 39, 405
(1977).
14. Charlot, G., and Tremillon, B., “Les Re´actions Chimiques dans les
Solvants et les Sels Fondus.” Gauthier-Villars, Paris, 1963.
15. Afanasiev, P., Geantet, C., and Kerridge, D. H., J. Mater. Chem. 5(2),
347 (1995).
16. Afanasiev, P., and Geantet, C., Mater. Chem. Phys. 41, 18 (1995).
17. Afanasiev, P., Geantet, C., and Breysse, M., J. Mater. Chem. 4, 1653
(1994).
18. Norman, C. J., Goulding, P. A., and McAlpine, I., Catal. Today 20, 313
(1994).
19. Srinivasan, R., Taulbee, D., and Davis, B. H., Catal. Lett. 9, 1 (1991).
20. Brinker, C. J., and Sherer, G. W., “Sol-Gel Science: the Physics and
Chemistry of Sol-Gel Processing.” Academic Press, New York, 1990.
carbonate ions increase the basicity of the melt and then
accelerate the mass transfer.
The influence of carbonate ions on the morphology of
zirconia particles can be clearly seen on the SEM pic-
tures. In the ZC0 sample prepared in the K–Na–NO3
mixture (Fig. 2a) the oxide particles have a spherical
morphology, typical of these preparations (16). The sample
consists of spherical agglomerates having a mean diame-
ter of ca. 1–2 ꢁm. By contrast, the sample ZC4 exhibits a
“cheesehole” morphology (Fig. 2b) which can be the result
of the advanced neck growth.
Polydentate oxoanions have been applied earlier to con-
trol the properties of molten salt preparations of oxides
(17). Assuggestedforzirconia(16), theprocessesdetermin-
ing the properties of the resulting oxide are the elimination
of nitrate groups from the amorphous Zr oxonitrate, the
nucleation of zirconia particles, and their extensive growth
and agglomeration. Acting as a strong base, carbonate ions
react chemically with the zirconium salt and accelerate the
subsequent aging of the zirconia precipitate. The new re-
action pathway avoids the production of pollutant gases
such as HCl and NO2. Moreover, the presence of carbon-
ate strongly influences the morphology of the particles. It
becomes possible to prepare solids with the porosity and
the surface area required for some catalytic applications
such as hydrotreatment.
Pavel Afanasiev
Christophe Geantet
Michel Lacroix
ꢄ
Miche`le Breysse
Institut de Recherches sur la Catalyse
2 Avenue A. Einstein
69626 Villeurbanne Ce´dex, France
Received February 13, 1996; revised April 1, 1996; accepted April 25,
1996
ACKNOWLEDGMENTS
The authors thank T. des Courie`res and J. L. Dubois from ELF Antar
for valuable discussions.
ꢄ
E-mail: breysse@catalyse.univ-lyon1.fr.