D
R. Zhang et al.
Letter
Synlett
tack on intermediate F by the nucleophilic species.7a,7b Fi-
nally, two equivalents of HI are oxidized by DMSO to give
iodine together with dimethyl sulfide and water.7f
(5) (a) Mao, R.-Z.; Cao, F.; Xiong, D.-C.; Li, Q.; Duan, J.; Ye, X.-S. Org.
Lett. 2015, 17, 5606. (b) Rountree, J. S.; Murphy, P. V. Org. Lett.
2009, 11, 871. (c) Chaudhury, A.; Ghosh, R. Org. Biomol. Chem.
2017, 15, 1444.
In summary, we have developed an iodine-catalyzed ox-
ysulfenylation of alkenes with various thiosulfates for the
efficient synthesis of sulfenylated 2,3-dihydrobenzofurans
and β-acetoxy sulfides, in which stable, odorless, and envi-
ronmentally friendly thiosulfates were employed as thiolat-
ing reagents, DMSO as a mild oxidant, and 2-allylphenol or
acetic acid as a nucleophile. A series of sulfenylated 2,3-di-
hydrobenzofurans and β-acetoxy sulfides were obtained in
moderate to good yields under simple and mild reaction
conditions.
(6) (a) Haraguchi, K.; Matsui, H.; Takami, S.; Tanaka, H. J. Org. Chem.
2009, 74, 2616. (b) Kojima, T.; Furukawa, K.; Maruyama, H.;
Inoue, N.; Tarashima, N.; Matsuda, A.; Minakawa, N. ACS Synth.
Biol. 2013, 2, 529. (c) Sun, Z.-H.; Wang, B. J. Org. Chem. 2008, 73,
2462.
(7) (a) Yang, F.-L.; Wang, F.-X.; Wang, T.-T.; Wang, Y.-J.; Tian, S.-K.
Chem. Commun. 2014, 50, 2111. (b) Vieira, A. A.; Azeredo, J. B.;
Gocto, M.; Santi, C.; da Silver, E. F. Jr.; Braga, A. L. J. Org. Chem.
2015, 80, 2120. (c) Gao, Y.; Gao, Y.; Tang, X.; Deng, P.; Hu, M.;
Wu, W.; Jiang, H. Org. Lett. 2016, 18, 1158. (d) Wang, D.; Zhang,
R.; Ning, W.; Yan, Z.; Lin, S. Org. Biomol. Chem. 2016, 14, 5136.
(e) Wang, D.; Yan, Z.; Xie, Q.; Zhang, R.; Lin, S.; Wang, Y. Org.
Biomol. Chem. 2017, 15, 1998. (f) Gao, X.; Pan, X.; Gao, J.; Jiang,
H.; Yuan, G.; Li, Y. Org. Lett. 2015, 17, 1038. (g) Wang, L.; Chen,
M.; Qi, L.; Xu, Z.; Li, W. Chem. Commun. 2017, 53, 2056.
(h) Denmark, S. E.; Kornfilt, D. J. P. J. Org. Chem. 2017, 82, 3192.
(8) (a) Bunte, H. Ber. Dtsch. Chem. Ges. 1874, 7, 646. (b) Distler, H.
Angew. Chem. Int. Ed. Engl. 1967, 6, 544. (c) Reeves, J. T.; Camara,
K.; Han, Z. S.; Xu, Y.; Lee, H.; Busacca, C. A.; Senanayake, C. H.
Org. Lett. 2014, 16, 1196.
Funding Information
We are grateful for financial support from the National Natural Sci-
ence Foundation of China (21302084).
)(
Supporting Information
(9) Qiao, Z.; Jiang, X. Org. Biomol. Chem. 2017, 15, 1942.
(10) Qiao, Z.; Jiang, X. Org. Lett. 2016, 18, 1550.
(11) (a) Qi, H.; Zhang, T.; Wan, K.; Luo, M. J. Org. Chem. 2016, 81,
4262. (b) Li, J.; Cai, Z. J.; Wang, S. Y.; Ji, S. J. Org. Biomol. Chem.
2016, 14, 9384. (c) Zhang, R.; Yan, Z.; Wang, D.; Wang, Y.; Lin, S.
Synlett 2017, 28, 1195.
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
References and Notes
(12) (a) Abbasi, M.; Mohammadizadeh, M. R.; Saeedi, N. New J. Chem.
2016, 40, 89. (b) Cui, H.; Liu, X.; Wei, W.; Yang, D.; He, C.; Zhang,
T.; Wang, H. J. Org. Chem. 2016, 81, 2252.
(1) (a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
(b) Kennemur, J. L.; Kortman, G. D.; Hull, K. L. J. Am. Chem. Soc.
2016, 138, 11914. (c) Song, S.; Zhang, Y.; Yeerlan, A.; Zhu, B.; Liu,
J.; Jiao, N. Angew. Chem. 2017, 129, 2527.
(2) (a) Beno, B. R.; Yeung, K.-S.; Bartberger, M. D.; Pennington, L. D.;
Meanwell, N. A. J. Med. Chem. 2015, 58, 4383. (b) Jackson, D. A.;
Widen, J. C.; Harki, D. A.; Brummond, K. M. J. Med. Chem. 2017,
60, 839. (c) Liu, Y.; Xie, Z.; Zhao, D.; Zhu, J.; Mao, F.; Tang, S.; Xu,
H.; Luo, C.; Geng, M.; Huang, M.; Li, J. J. Med. Chem. 2017, 60,
2227.
(3) (a) You, N.-H.; Chueh, C.-C.; Liu, C.-L.; Ueda, M.; Chen, W.-C.
Macromolecules 2009, 42, 4456. (b) Arslan, M.; Kiskan, B.; Yagci,
Y. Macromolecules 2016, 49, 767. (c) Oleske, K. W.; Barteau, K.
P.; Turker, M. Z.; Beaucage, P. A.; Estroff, L. A.; Wiesner, U. Mac-
romolecules 2017, 50, 542.
(4) (a) Meng, D.; Chen, W.; Zhao, W. J. Nat. Prod. 2007, 70, 824.
(b) Suhas, R.; Chandrashekar, S.; Gowda, D. C. Eur. J. Med. Chem.
2012, 48, 179. (c) Nakabayashi, R.; Yang, Z. G.; Nishizawa, T.;
Mori, T.; Saito, K. J. Nat. Prod. 2015, 78, 1179.
(13) 2,3-Dihydro-1-benzofurans 3; General Procedure
NaI (0.06 mmol) and the appropriate thiosulfate 2 (0.36 mmol)
were added to a solution of 2-allylphenol (1a; 0.30 mmol) in
MeCN (1 mL). DMSO (0.60 mmol) was then added and the
mixture was stirred in a sealed tube at 100 °C for 3 h. When the
reaction was complete, the mixture was diluted with EtOAc
(3 × 5 mL) and the reaction was quenched with sat. aq Na2SO3.
The mixture was extracted with EtOAc (3 × 10 mL), and the
organic layers were combined, washed with H2O (10 mL), dried
(Na2SO4), and concentrated in vacuo. The residue was purified
by column chromatography (silica gel, PE).
2-[(Benzylthio)methyl]-2,3-dihydro-1-benzofuran (3a)
Yellow oil; yield: 76.9 mg (91%). 1H NMR (400 MHz, CDCl3):
δ = 7.34–7.25 (m, 5 H), 7.17–7.10 (m, 2 H), 6.87–6.79(m, 2 H),
4.92–4.85 (m, 1 H), 3.82 (s, 2 H), 3.33–3.27 (dd, J = 8, 16 Hz, 1 H),
3.05–2.99 (dd, J = 8, 16 Hz, 1 H), 2.84–2.79 (dd, J = 6, 14 Hz, 1 H),
2.72–2.67 (dd, J = 6, 14 Hz, 1 H). 13C NMR (100 MHz, CDCl3):
δ = 159.15, 138.17, 129.00, 128.57, 128.06, 127.13, 126.28,
124.99, 120.54, 109.41, 82.19, 36.81, 36.09, 34.97. HRMS (ESI):
m/z [M + Na]+ Calcd for C16H16NaOS: 279.0814; found: 279.0794.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–D