Hypervalent Iodine Mediated Intramolecular
Cyclization of Thioformanilides: Expeditious
Approach to 2-Substituted Benzothiazoles
Arylbenzthiazoles are most commonly synthesized via one
of the two major routes. The most commonly used method
involves the condensation of o-aminothiophenols with sub-
stituted nitriles, aldehydes, carboxylic acids, acyl chlorides, or
8
esters. This method, however, suffers from limitations such as
the difficulties encountered in the synthesis of readily oxidiz-
able o-aminothiophenols bearing substituent groups. Another
route is based on the Jacobson’s cyclization of thiobenza-
D. Subhas Bose* and Mohd. Idrees
Organic Chemistry DiVision III, Fine Chemicals Laboratory,
Indian Institute of Chemical Technology, Hyderabad, 500 007,
India
9
,10
nilides.
Other general methods include the microwave-
mediated reaction of o-aminothiophenol with â-chlorocinna-
maldehydes, the reaction of dibenzyl disulfides with o-aminothio-
phenol, the reduction of o,o′-dinitrodiphenyl disulfide, the
reaction of S-aryl thiobenzoate with arylhaloamines, from 1,2,3-
benzodithiazole-2-oxides, radical cyclization of benzyne inter-
dsb@iict.res.in; bose_iict@yahoo.co.in
ReceiVed May 5, 2006
11-16
mediates, and Grignard reactions of arylisothiocyanates.
More recently, arylbenzothiazoles have been prepared from the
oxidative coupling of thiophenols and aromatic nitriles17 using
cerric ammonium nitrate (CAN). However, the reported syn-
thesis of 2-arylbenzothiazoles mediated by CAN is irreproduc-
ible; the only products formed in this reaction are bis-(p-tolyl)
1
8
disulfide and p-tolyl p-toluenethiosulfonate. These strategies,
however, were found to be incompatible with nitro functionality,
requiring multistep synthesis, and therefore a new alternative
route for the synthesis of 2-arylbenzothiazoles needs to be
explored.
A new, mild, and efficient method has been developed for
the synthesis of 2-substituted benzothiazoles via the intramo-
lecular cyclization of thioformanilides by using hypervalent
Over recent years, organic derivatives of hypervalent iodine
reagents occupy an important place in the realm of natural and
synthetic organic chemistry because of their potential applica-
tions for the construction of carbon-heteroatom and carbon-
2 2
iodine reagents in CH Cl at ambient temperature. The
reaction proceeds via a thiyl radical in high yields to give
the novel compound oxybis benzothiazole and is also
amenable to generating combinatorial libraries of heterocyclic
compounds by solid-phase synthesis.
1
9
carbon bonds. One of the field’s most significant advances,
20
the discovery of the Dess-Martin periodinane (DMP) 1,1,1-
triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one, opens the
The exploration of privileged structures in drug discovery is
a rapidly emerging theme in medicinal chemistry. These
structures represent a class of molecules capable of binding to
multiple receptors with high affinity. The exploitation of these
molecules enables the medicinal chemist to rapidly discover
biologically active compounds across a wide range of thera-
peutic areas on a reasonable time scale. 2-Arylbenzothi-
azoles are an important class of bicyclic privileged substructures
owing to their potent utility as imaging agents for â-amyloid,
antitumor agents, calcium channel antagonists, antituberculotics,
(
8) Ben-Alloum, A.; Bakkas, S.; Soufiaoui, M. Tetrahedron Lett. 1997,
8, 6395-6396.
9) (a) Shi, D.-F.; Bradshaw, T. D.; Wrigley, S.; McCall, C. J.; Lelieveld,
3
(
I. F.; Stevens, M. F. G. J. Med. Chem. 1996, 39, 3375-3384. (b) Klunk,
W. E.; Mathis, C. A., Jr.; Wang, Y. PCT Int. Appl., 2004.
(10) Hein, D. W.; Alheim, R. J.; Leavitt, J. J. J. Am. Chem. Soc. 1957,
7
9, 427-429.
(11) Paul, S.; Gupta, M.; Gupta, R. Synth. Commun. 2002, 32, 3541-
3
547.
(
12) Shirinian, V. Z.; Melkova, S. Yu.; Belen’kii, L. I.; Krayushkin, M.
M.; Zelinsky, N. D. Russ. Chem. Bull. 2000, 49, 1859-1862.
13) Zhong, W. H.; Zhang, Y. M.; Chen. X. Y. J. Indian Chem. Soc.
(
antiparasitics, chemiluminescent agents, and also as photosensi-
2001, 78, 316-318.
(14) Roe, A.; Tucker, W. P. J. Heterocycl. Chem. 1965, 2, 148-151.
tizers.1-7
(
(
15) Stanetty, P.; Krumpark, B. J. Org. Chem. 1996, 61, 5130-5133.
16) (a) Ares, J. J. Synth. Commun. 1991, 21, 625-633. (b) Majo, V. J.;
*
To whom correspondence should be addressed. Fax: +91-40-27160387.
1) Mathis, C. A.; Wang, Y.; Holt, D. P.; Huang, G.-F.; Debnath, M. L.;
Klunk, W. E. J. Med. Chem. 2003, 46, 2740-2754.
2) Hutchinson, I.; Jenninga, S. A.; Vishnuvajjala, B. R.; Westwell, A.
D.; Stevens, M. F. G. J. Med. Chem. 2002, 45, 744-747.
3) Stevens, M. F. G.; Wells, G.; Westwell, A. D.; Poole, T. D. PCT
Int. Appl., WO 0304479, 2003.
4) Caujolle, R.; Loiseau, P.; Payard, M.; Gayral, P.; Kerhir, M. N. Ann.
Pharm. Fr. 1989, 47, 68-73.
5) Yamamoto, K.; Fujita, M.; Tabashi, K.; Kawashima, Y.; Kato, E.;
Oya, M.; Iso, T.; Iwao J. Med. Chem. 1988, 31, 919-930.
6) Yoshida, H.; Nakao, R.; Nohta, H.; Yamaguchi, M. Dyes and
Pigments 2000, 47, 239-245.
7) Petkov, I.; Deligeorgiev, T.; Markov, P.; Evstatiev, M.; Fakirov, S.
Polym. Degrad. Stab. 1991, 33, 53-66.
Prabhakaran, J.; Mann, J. J.; Kumar, J. S. D. Tetrahedron Lett. 2003, 44,
8535-8537.
(17) Tale, R. H. Org. Lett. 2002, 4, 1641-1642.
(
(
(18) Nair, V.; Augustine, A. Org. Lett. 2003, 5, 543-544.
(19) (a) Varvoglis, A.; Spyroudis, S. Synlett 1998, 221. (b) Varvoglis,
A. HyperValent Iodine in Organic Synthesis; Academic Press: San Diego,
1996; p 256. (c) Wirth, T.; Hirt, U. H. Synthesis 1999, 1271-1287. (d)
Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Sugita, K. J. Am. Chem. Soc.
2002, 124, 2221-2232 and references therein. (e) Bose, D. S.; Reddy, A.
V. N. Tetrahedron Lett. 2003, 44, 3543-3545. (f) Prakash, O.; Batra, A.;
Sharma, V.; Saini, R.; Verma, R. S. J. Indian Chem. 2003, 80, 1031-
1034. (g) Varma, R. S.; Saini, R. K.; Prakash, O. Tetrahedron Lett. 1997,
38, 2621-2622. (h) Aggarwal, R.; Sumran, G.; Synth. Commun. 2006, 36,
875-879. (i) Wipf, P.; Venkatraman, S. J. Org. Chem. 1996, 61, 8004-
8005.
(
(
(
(
(
1
0.1021/jo0609374 CCC: $33.50 © 2006 American Chemical Society
Published on Web 09/15/2006
J. Org. Chem. 2006, 71, 8261-8263
8261