3
2
O N
3
3
2
3
M. A.; Raja, R.; Banerjea, A. C. Verma, A. K.; Kukreti, S.;
Bharatam, P. V. ACS Med. Chem. Lett. 2015, 6, 1065-1070. (b)
Zheng, S.; Chan, C.; Furuuchi, T.; Wright, B. J. D.; Zhou, B.;
Guo, J. Danishefsky, S. D. Angew. Chem. Int. Ed. 2006, 45,
1754-1759. (c) Marchand, C.; Antony, S.; Kohn, K. W.;
Cushman, M.; Ioanoviciu, A.; Staker, B. L.; Burgin, A. B.;
Stewart, L.; Pommier, Y. Mol. Cancer Ther. 2006, 5, 287-295.
(d) Kaneda, T.; Takeuchi, Y.; Matsui, H.; Shimizu, K.;
Urakawa, N.; Nakajyo, S. J. Pharmacol. Sci. 2005, 98, 275-282.
(e) Ramesh, P.; Reddy, N. S.; Venkateswarlu, Y. J. Nat. Prod.
1999, 62, 780-781. (f) Bentley, K. W. In The Isoquinoline
Alkaloids; Harwood Academic: Australia, 1998; Vol. 1. (g)
Scholz, D.; Schmidt, H.; Prieschl, E. F, Csonga, R.; Scheirer,
W.; Weber, V.; Lenbachner, A.; Seidl, G.; Werner, G.; Mayer,
P.; Baumruker, T. J. Med. Chem. 1998, 41, 1050-1059 and
references therein.
(a) Yavari, I.; Ghazanfarpour-Darjani, M.; Soleimani, E.;
Khavasi, H. R. Tetrahedron Lett. 2007, 48, 3749-3751. (b)
Shaabani, A.; Soleimani, E.; Khavasi, H. R. Tetrahedron Lett.
2007, 48, 4743-4747. (c) Wang, G.-W.; Li, J.-X. Org. Biomol.
Chem. 2006, 4, 4063-4064. (d) Diaz, J. L.; Miguel, M.; Lavilla,
R. J. Org. Chem. 2004, 69, 3550-3553 and references therein.
(a) Chaudhari, T. Y.; Urvashi; Ginotra, S. K.; Yadav, P.;
Kumar, G.; Tandon, V. Org. Bioorg. Chem. 2016, 14, 9896-
9906. (b) Urvashi; Rastogi, G. K.; Ginotra, S. K.; Agarwai, A.;
Tandon, V. Org. Bioorg. Chem. 2015, 13, 1000-1007. (c)
Zhang, M.; Zhang, H.-J.; Ruan, W.; Wen, T.-B. Eur. J. Org.
Chem. 2015, 5914-5918. (d) Tandon, V.; Urvashi; Yadav, P.;
Sur, S.; Abbat, C.; Tiwari, V.; Hewer, R.; Papathonasopoulos,
M. A.; Raja, R.; Banerjea, A. C.; Verma, A. K.; Kukreti, S.;
Bharatam, P. V. ACS Med. Chem. Lett. 2015, 6, 1065-1070. (e)
Guo, Z.; Cai, M.; Jiang, J.; Yang, L.; Hu, W. Org. Lett. 2010,
12, 652-655. (f) Chen, Z.; Yang, X.; Wu, J. Chem. Commun.
2009, 45, 3469-3471. (g) Obika, S.; Kono, H.; Yasui, Y.;
Yanada, R.; Takemoto, Y. J. Org. Chem. 2007, 72, 4462-4468.
(h) Su, S.; Porco, J. A. Jr. Org. Lett. 2007, 9, 4983-4986. (i)
Yamada, R.; Obika, S.; Kono, H.; Takemoto, Y. Angew. Chem.
Int. Ed. 2006, 45, 3822-3825. (j) Asao, N.; Yudha, S. S.;
Nogami, T.; Yamamoto, Y. Angew. Chem. Int. Ed. 2005, 44,
5526-5528. (k) Ohtake, M.; Nakamura, H.; Yamamoto, Y.
Tetrahedron Lett. 2004, 45, 7339-7341.
CHO
ReBr(CO)
5
(5 mol%)
Ph
Ph
N
+
PhNH
2
+ CH NO
34
35
3
2
CH ClCH
2
2
Cl (4 mL)
Ph
100 °C, 48 h
3
3
3
3
6
7
8
9
3b, 86%
0
.2 mmol
0.2 mmol
0.8 mmol
CH
3
OOC
COOCH
3
CHO
ReBr(CO)
5
(5 mol%)
Ph
N
+
PhNH
2
+ CH (COOCH )
40
41
2
3
2
toluene (4 mL)
80 °C, 48 h
Ph
Ph
.2 mmol
4
2
0
0.2 mmol
0.8 mmol
3g, 85%
1
2
43
Scheme 4.
4
4
4
5
3
4
5
6
7
8
9
0
1
2
3
4
5
46
47
A plausible reaction pathway for the rhenium-
catalyzed reaction is shown in Scheme 5. First, the
decarbonylation of ReBr(CO) to form ReBr(CO) , which is
5 4
the coordinative unsaturated 16-electron complex, is the
first step of the catalytic reaction. The intermolecular
nucleophilic attack of the nitrogen of the imino group on the
carbon-carbon triple bond, which is activated by the
coordination with the rhenium complex, formed the
corresponding I. The nucleophilic addition of nitroalkanes,
active methylene compounds and the terminal alkyne to I,
followed by the protonation gave the corresponding 1,2-
4
4
5
5
8
9
0
1
2
3
7
52
53
5
5
5
5
4
5
6
7
1
1
1
1
1
1
58
59
60
8
,9
dihydroisoquinolines.
6
1
ReBr(CO)
+ CO - CO
ReBr(CO)
5
Nu
62
63
R1
N
∆
R1
6
4
N
R2
4
65
66
67
H
R2
6
6
7
7
7
7
7
8
9
0
1
2
3
4
Nu
R1
R1
N
N
H
4
5
(a) Umeda, R.; Tabata, H.; Tobe, Y.; Nishiyama, Y. Chem. Lett.
2014, 43, 883-886. (b) Umeda, R.; Kimura, M.; Tobe, Y.;
Nishiyama, Y. Bull. Chem. Soc. Jpn. 2016, 89, 110-112. (b)
Umeda, R.; Kaiba, K.; Morishita, S.; Nishiyama, Y.
ChemCatChem 2011, 3, 1743-1746.
R2
ReBr(CO)
4
R2
ReBr(CO)
75
76
4
7
7
7
8
Synthesis of 1,2-dihydroisoquinolines by the three component
coupling reaction:(a) Basavaish, D.; Thamihoraci, P. Eur. J.Org.
Chem. 2017, 5135-5140. (b) Xiao, T.; Peng, P.; Xie, Y.; Wang,
Z.-y.; Zhou, L. Org. Lett. 2015, 17, 4332-4335. (c) Jha, R. R.;
Saunthwal, R. K.; Verma, A. K. Org. Biomol. Chem. 2014, 12,
552-556. (d) Verma, A. K.; Choudhary, D.; Saunthwal, R. K.;
Rustogi, V.; Patel, M. J. Org. Chem. 2013, 78, 4386-4401. (e)
Verma, A. K.; Choudhary, D.; Saunthwal, R. K.; Rustogi, V.;
Patel, M.; Tiwari, R. K. J. Org. Chem. 2013, 78, 6657-6669. (f)
Dighe, S. U.; Batra, S. Tetrahedron 2013, 69, 9875-9885. (g)
Ouyang, H.-C.; Tang, R.-Y.; Zhong, P.; Zhang, X.-G.; Li, J.-H.
J. Org. Chem. 2011, 76, 223-228. (h) Waldmann, H.; Eberhardt,
L.; Wittstein, K.; Kumar, K. Chem. Commun. 2010, 46, 4622-
4624. (i) Patil, N. T.; Mutyala, A. K.; Lakshmi, G. V. V.; Raju,
P. V. K.; Sridhar, B. Eur. J. Org. Chem. 2010, 1999-2007. (j)
Zhou, H.; Jin, H.; Ye, S.; He, H.; Wu, J. Tetrahedron Lett. 2009,
50, 4616-4618. (k) Ye, S.; Zhou, H.; Wu, J. Tetrahedron 2009,
65, 1294-1299. (l) Ye, Y.; Ding, Q.; Wu, J. Tetrahedron 2008,
64, 1378. (m) Ding, Q.; Yu, X.; Wu, J. TetrahedronLett. 2008,
49, 2752-2755. (n) Ding, Q.; Wang, B.; Wu, J. Tetrahedron
2007, 63, 12166-12171. (o) Sun, W.; Ding, Q.; Sun, X.; Fan,
R.; Wu, J. J. Comb. Chem. 2007, 9, 690-694. (p) Asao, N.; Iso,
K.; Yudha, S. S. Org. Lett. 2006, 8, 4149-4151.
R1
R2
N
79
Nu
H
8
8
8
0
1
2
ReBr(CO)
4
I
1
1
6
7
83
84
85
86
Scheme 5.
1
1
2
2
2
2
2
2
2
2
2
8
9
0
1
2
3
4
5
6
7
8
In summary, we showed that the rhenium complex acts
as the catalyst for the reaction of 2-(1-alkynyl)arylaldimines
and pronucleophiles, such as nitroalkanes, active methylene
compounds, terminal alkyne, hydrosilane, allylstannane, and
ketene silyl acetal, and the three-component coupling
reaction of 2-(phenylethynyl)benzaldehyde, aniline and
8
8
8
9
91
92
7
8
9
0
9
9
9
9
3
4
5
6
pronucleophiles
giving
the
corresponding
1,2-
dihydroisoquinolines. The application of the reaction and
determining the reaction pathway are now in progress.
97
9
8
2
3
3
9 References and Notes
99
00
1
0
1
1
For selected examples, see: (a) Tandon, V.; Urvashi; Yadav, P.;
Sur, S.; Abbat, C.; Tiwari, V.; Hewer, R.; Papathonasopoulos,