J. H. Byers et al. / Tetrahedron Letters 48 (2007) 7903–7905
7905
OCH
3
t
-Bu
t
-Bu
1
eq
t-BuI
+
+
propylene oxide
Bu N I /Na S O
CH Cl /hv
+
-
OCH3
4
2
2
3
(
CO) Cr
(CO) Cr
3
3
1.3%
13%
2
2
7
(5 eq)
1 (5 eq)
Scheme 3. Competitive radical additions.
ene–Cr(CO) complexes favored ortho and meta addi-
S.; Schwarz, A. Tetrahedron Lett. 1996, 37, 2947; (c)
Schmalz, H.-G.; Kiehl, O.; Gotov, B. Synlett 2002, 1253;
(d) Hoffmann, O.; Schmalz, H.-G. Synlett 1998, 1426.
. (a) Lin, H.; Yang, L.; Li, C. Organometallics 2002, 21,
3
tion of nucleophiles, and polarization effects favored
1
3
para attack. The predominance of meta-substitution
seen in our work with tert-butyl radicals can be under-
stood in light of this model, by recognizing the neutral
nature of the radical, greatly diminishing the influence
of polarization effects. Predominate meta-direction by
3
3
2
848; (b) Lin, H.-C.; Yang, L.; Li, C.-Z. Chin. J. Chem.
003, 21, 797.
4
5
. Merlic, C. A.; Miller, M. M.; Hietbrink, B. N.; Houk, K.
N. J. Am. Chem. Soc. 2001, 123, 4904.
. Byers, J. H.; Janson, N. J. Org. Lett. 2006, 8, 3453.
methyl groups has also been observed in the radical sub-
3
stitution of SmI ketyls for halides.
6. (a) Merlic, C. A.; Walsh, J. C. Tetrahedron Lett. 1998, 39,
083; (b) Taniguchi, N.; Uemura, M. Tetrahedron Lett.
2
2
When anisole chromiumtricarbonyl (7) was submitted to
these reaction conditions, 3-tert-butyl and 3,5-di-tert-
butyl anisole were obtained (Scheme 2), accompanied
by significant quantities of unreacted anisole chromium-
tricarbonyl. Arene complexes bearing electron donors
are apparently more robust than those lacking such
functionality, allowing for recovery of some unreacted
starting material 7. In order to assess the electronic
influence of a methoxy substituent on the rate of radical
attack, we subjected an equimolar mixture of 7 and 1 to
limiting tert-butyl iodide, leading to the formation of a
1997, 38, 7199; (c) Creary, X.; Mehrsheikh-Mohammadi,
M. E.; McDonald, S. J. Org. Chem. 1989, 54, 2904.
. (a) Byers, J. H.; Campbell, J. E.; Knapp, F. H.; Thissell, J.
G. Tetrahedron Lett. 1999, 40, 2677–2680; (b) Byers, J. H.;
Duff, M. P.; Woo, G. W. Tetrahedron Lett. 2003, 44,
7
6
853–6855; (c) Byers, J. H.; DeWitt, A.; Nasveschuk, C.
G.; Swigor, J. E. Tetrahedron Lett. 2004, 45, 6587–
590.
6
8
. Curran, D. P.; Dooseop, K. Tetrahedron 1991, 47, 6171–
6188.
9. (a) Nagahara, K.; Ryu, I.; Komatsu, M.; Sonoda, N. J.
Am. Chem. Soc. 1997, 119, 5465; (b) Kreimerman, S.; Ryu,
I.; Minakate, S.; Komatsu, M. Org. Lett. 2000, 2, 389; (c)
Ryu, I.; Nasgahara, K.; Kambe, N.; Sonoda, N.; Kreim-
erman, S.; Komatsu, M. Chem. Commun. 1998, 1953.
0. Typical reaction conditions: In a screw-top Pyrex test
tube, the chromium complex 1 (0.270 g, 1 mmol), tert-
1
0:1 ratio of tert-butylbenzene to 3-tert-butylanisole
(
Scheme 3). Thus, we concluded that the rate of radical
attack on 1 occurs at 10 times the rate as that observed
with 7. This makes qualitative sense in light of the fact
that nucleophilic radicals are known to react more
rapidly with more electron-deficient alkenes, making
the deactivating effect of a methoxy substituent
reasonable.
1
butyl iodide (1.839 g, 10 mmol), propylene oxide (0.515 g,
+ À
1
0 mmol), Na S O (0.158 g, 1 mmol), and Bu N I
2 2 3 4
(
0.0369 g, 0.1 mmol) were combined with 3 mL of dichlo-
romethane. The reaction mixture was deoxygenated at
°C for 10 min and photolyzed with a 450-W medium
0
In summary, we have found that our methodology for
radical aromatic substitution can be used effectively with
benzene chromiumtricarbonyl and highly nucleophilic
tert-butyl radicals. The observed regioselectivity is rea-
sonable in light of the established literature dealing with
nucleophilic attack on arene chromiumtricarbonyl data.
pressure Hanovia lamp for 12 h. Analysis was performed
by GC/FID on an HP-5 capillary column. The identities
of all products were determined by comparison of
retention times with authentic samples. Response factors
and yields were determined relative to dodecane
(ꢀ100 mg) added as an internal standard prior to GC/
FID analysis (Hewlett-Packard 5890) gas chromatograph
for yield determination.
1
1. The procedure used to synthesize 2: Toma, S.; Hudecek,
M. J. Organomet. Chem. 1991, 406, 147; The sample of 2
provided spectra identical to those obtained for 2 previ-
ously generated through other methods: Djukic, J.-P.;
Rose-Munch, F.; Rose, E.; Simon, F.; Dromzee, Y.
Organometallics 1995, 14, 2027.
Acknowledgments
Financial support is acknowledged from the NSF
(
CHE-0315745). A summer research fellowship for
J.B.A. was provided by the Vermont Genetics Network.
1
2. Citterio, A.; Minisci, F.; Porta, O.; Sesana, G. J. Am.
Chem. Soc. 1977, 99, 7960.
1
3. (a) Solladie-Cavallo; Wipf, G. Tetrahedron Lett. 1980, 21,
3047; (b) Kundig, E. P.; Desobry, V.; Simmons, D. P.;
Wenger, E. J. Am. Chem. Soc. 1989, 111, 1804; (c)
Semmelhack, M. F.; Clark, G. R.; Farina, R.; Saeman, M.
J. Am. Chem. Soc. 1979, 101, 217; (d) Semmelhack, M. F.;
Garcia, J. L.; Cortes, D.; Farina, R.; Hong, R.; Carpenter,
B. K. Organometallics 1983, 2, 467.
References and notes
1
. Pape, A. R.; Kaliappan, K. P.; Kundig, E. P. Chem. Rev.
000, 100, 2917.
2
2
. (a) Schmalz, H.-G.; Siegel, S.; Bats, J. W. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 2383; (b) Schmalz, H.-G.; Siegel,