M. Kirihara et al. / Tetrahedron Letters 50 (2009) 1180–1183
1183
TaCl , Ta(OEt)
The reaction is monitored by thin layer chromatography (TLC).
After 1 disappears from the TLC, saturated aqueous sodium thio-
sulfate (15 mL) is added to the reaction mixture, followed by
extraction with ethyl acetate (20 mL Â 3). The combined organic
phase is washed with brine, dried over anhydrous magnesium sul-
fate, and evaporated. Chromatography on silica gel gives pure
products (2 or 3).
5
5
H O
2
Ta O
XnTa(OH)5-n
O O
2
5
S
R1
R2
H O and/or
2
2
solvent
R OH
ROOH and/or
O
Oxidant
S
NH
R1
R2
References and notes
R C
R C
N
OOH
1.
(a) Drabowicz, J.; Kielbsinski, P.; Mikolajczyk, M.; in Patai, S.; Rappoport, Z.;
Stirling, C. (Eds.), The Chemistry of Sulphone and Sulphoxide, John Wiley and
Sons, NY, 1988.; (b) Carreno, M. C. Chem. Rev. 1995, 95, 1717–1760; (c)
Frenanez, I.; Khiar, N. Chem. Rev. 2003, 103, 3651–3706.
S
R1
R2
Tantalum(V) Peroxides
complexed with solvent )
(
2. (a) Oae, S.; Kawai, T.; Furukawa, N. Tetrahedron Lett. 1984, 35, 69–72; (b)
Nicolaous, K. C.; Magolda, R. L.; Sipio, W. J.; Lysenko, W. E.; Joullie, M. M. J. Am.
Chem. Soc. 1980, 102, 3784–3793; (c) Leonard, N. J.; Johnson, C. R. J. Org. Chem.
Scheme 4.
1962, 27, 282–284; (d) Iranpoor, N.; Firouzabadi, H.; Pourali, A.-R. Synlett 2004,
347–349; (e) Hajipour, A. R.; Kooshki, B.; Ruoho, A. E. Tetrahedron Lett. 2005, 46,
5503–5506; (f) Ozanne-Beaudenon, A.; Quideau, S. Tetrahedron Lett. 2006, 47,
or aqueous methanol in the absence of hydrogen peroxide. In this
case, 1a was completely unreacted and was quantitatively recov-
ered. This result means that tantalum(V) chloride itself is not the
oxidizing agent in the reaction system (Scheme 3).8
5869–5873.
3
.
Jones, C. W. in Application of Hydrogen Peroxide and Derivatives, RCS Crean
Technology Monographs. Formerly of Solvay Interox R&D, Windnes, UK. 1999.;
Noyori, R.; Aoki, M.; Sato, K. Chem. Commun. 2003, 1977–1986.
4. (a) Kaczorowska, K.; Kolarska, Z.; Mitka, K.; Kowalski, P. Tetrahedron 2005, 61,
315–8327; (b) Mba, M.; Prins, L. J.; Licini, G. Org. Lett. 2007, 9, 21–24; (c)
8
A plausible reaction mechanism is shown in Scheme 4. Tanta-
lum(V) chloride or tantalum(V) ethoxide immediately reacts with
water to form tantalum(V) hydroxides. The resulting hydroxides
react with hydrogen peroxide or peroxides derived from the reac-
tion of hydrogen peroxide with the solvents (alcohols or nitriles) to
produce tantalum(V) peroxides. Since tantalum(V) compounds act
Jeyakumar, K.; Chand, K. Tetrahedron Lett. 2006, 47, 4573–4576; (d) Egami, H.;
Katsuki, T. J. Am. Chem. Soc. 2007, 129, 8940–8941; (e) Blakemore, P. R.; Burge, M.
S. J. Am. Chem. Soc. 2007, 129, 3068–3069; (f)Mohammadpoor-Baltork, I.;Hill, M.;
Caggiano, L.; Jackson, R. F. W. Synlett. 2006, 3540–3544; (g) Sato, K.; Hyodo, M.;
Aoki, M.; Zheng, X.-Q.; Noyori, R. Tetrahedron 2001, 57, 2469–2476; (h) Shi, X.-Y.;
Wei, J.-F. J. Mol. Catal. A 2008, 280, 142–147; (i) Yamazaki, S. Bull. Chem. Soc. Jpn.
1996, 69,
2955–2959; (j) Kelly, P.; Lawrence, S. E.; Maguire, A. R. Synlett 2007,
1
1e–o
as Lewis acid,
alcohols and nitriles coordinate with tanta-
1501–1506; (k) Hosseinpoor, F.; Golchoubian, H. Tetrahedron Lett. 2006, 47,
5
3
195–5197; (l) Alonso, D. A.; Nájera, C.; Varea, M. Tetrahedron Lett. 2002, 43,
459–3461; (m) Yuan, Y.; Bian, Y. Tetrahedron Lett. 2007, 48, 8518–8520.
lum(V) peroxides to produce tantalum(V) peroxide complexes.
The tantalum(V) peroxide complexes oxidize sulfides or sulfoxides,
and revert to tantalum(V) hydroxides (or their complex of the sol-
vent). The resulting tantalum(V) hydroxides react with peroxides
to form the tantalum(V) peroxide complexes again. Unfortunately,
the chemistry of tantalum(V) peroxides is almost unknown even in
inorganic chemistry. Therefore, the exact structure of tantalum(V)
5.
(a) Kirihara, M.; Okubo, K.; Koshiyama, T.; Kato, Y.; Hatano, A. ITE Lett. 2004, 5,
279–281; (b) Kirihara, M.; Harano, A.; Tsukiji, H.; Takizawa, R.; Uchiyama, T.;
Hatano, A. Tetrahedron Lett. 2005, 46, 6377–6380; (c) Kirihara, M.; Ogawa, S.;
Noguchi, T.; Okubo, K.; Monma, Y.; Shimizu, I.; Simosaki, R.; Hatano, A.; Hirai,
Y. Synlett 2006, 2287–2289; (d) Kirihara, M.; Asai, Y.; Ogawa, S.; Noguchi, T.;
Hatano, A.; Hirai, Y. Synthesis 2007, 3286–3289; (e) Noguchi, T.; Hirai, Y.;
Kirihara, M. Chem. Commun. 2008, 3040–3042.
9
6. Hirao, T.; in ACS Symposium Series 974 (Vanadium: The Versatile Metal),
American, pp 2–27.
peroxide complexes is unclear. Although the solvent effect is not
perfectly clear, it is assumed that the coordinative properties of
the solvents affect the oxidative ability of the tantalum(V) perox-
ides. Further details of this reaction and the structure of tanta-
lum(V) peroxide complexes are currently under investigation.
In the presence of sodium iodide, iodo cation equivalents or
iodine derived from the oxidation of the iodo anion reacts with a
sulfide to produce an iodosulfonium ion intermediate. The inter-
mediate subsequently reacts with water to form the sulfoxide
7. (a) Zenz, C.; Bartlett, J. P.; Thiede, W. H. Arch. Environ. Health 1962, 5, 542–546;
(
b) Browning, E. Toxicity of industrial Metals, 2nd ed.; Appleton-Century-Crofts:
New York, 1969. 340–347.
8.
A referee asked what could be the effect of oxygen and other oxidizing agents
such as Oxone on the selectivity. We think that oxygen cannot be an oxidant in
this reaction system, because the sulfide (1a) is inert without hydrogen
peroxide as shown in Scheme 3. We examined the reaction depicted in Scheme
3
under air and oxygen atmosphere. Since it has been reported that Oxone
rapidly oxidizes sulfides to the corresponding sulfones without any catalysts,
we did not examine the reaction of sulfides with oxone in the presence of TaCl
5
.
Chemical Society, 2007 and references cited therein.
(
Scheme 5). It has been reported that the first step is fast and
9.
A referee pointed out that it would be better if comments on experimental results
and mechanistic aspects are discussed throughout the manuscript, instead of
having this listing of tables of results followed by some discussions in the last
part of the manuscript. We think that the active species of this oxidation must be
tantalum(V) peroxide complexes. Unfortunately, the chemistry of tantalum(V)
peroxide is almost unknown even in inorganic chemistry, it is impossible to
discuss the mechanistic aspects throughout the manuscript.
10
reversible, and the second step is very slow. The formation of
the iodosulfonium ions prevents the reaction of sulfides with tan-
talum(V) peroxide complexes, therefore sulfides did not produce
the oxidized products in the presence of the molar equivalent of
sodium iodide.
1
1
0. Higchi, T.; Gensch, K.-H. J. Am. Chem. Soc. 1966, 5, 5486–5487.
A general experimental procedure for the oxidation of sulfides
is thus the following: A mixture of sulfide (1.0 mmol), tantalum
chloride (7.1 mg, 0.02 mmol), and 30% hydrogen peroxide
1. Recent reports of organic syntheses using tantalum reagents: (a) Takai, K.;
Yamada, M.; Odaka, H.; Utimoto, K. J. Org. Chem. 1994, 59, 5852–5853; (b)
Aoyagi, Y.; Tanaka, W.; Ohta, A. J. Chem. Soc., Chem. Commun. 1994, 1225–1226;
(
c) Takai, K.; Yamada, M.; Odaka, H.; Utimoto, K.; Fujii, T.; Furukawa, I. Chem.
(
0.5 mL, 5 mmol) in a solvent (2 mL, acetonitrile or methanol) is
Lett. 1995, 315–316; (d) Takai, K.; Yamada, M.; Utimoto, K. Chem. Lett. 1995,
stirred at room temperature (acetonitrile) or 45 °C (methanol).
8
8
51–852; (e) Chandrasekhar, S.; Takhi, M.; Uma, G. Tetrahedron Lett. 1997, 38,
089–8092; (f) Chandrasekhar, S.; Takhi, M.; Reddy, Y. R.; Mohapatra, S.; Rao,
C. R.; Reddy, K. V. Tetrahedron 1997, 53, 14997–15004; (g) Chandrasekhar, S.;
Reddy, B. V. Synlett 1998, 851–852; (h) Chandrasekhar, S.; Ramachander, T.;
Takhi, M. Tetrahedron Lett. 1998, 39, 3263–3266; (i) Chandrasekhar, S.;
Mohanty, P. K.; Raza, A. Synth. Commun. 1999, 29, 257–262; (j)
Chandrasekhar, S.; Ramachandar, T.; Prakash, S. J. Synthesis 2000, 1817–
I
cat.Ta(V)
H O
2
2
1818; (k) Chandrasekhar, S.; Prakash, S. J.; Jagadehwar, V.; Narsihmulu, C.
Tetrahedron Lett. 2001, 42, 5561–5563; (l) Andes, C.; Harkins, S. B.; Murtuza, S.;
Oyler, K.; Sen, A. J. Am. Chem. Soc. 2001, 123, 7423–7424; (m) Shibata, I.; Nose,
K.; Sakamoto, K.; Yasuda, M.; Baba, A. J. Org. Chem. 2004, 69, 2185–2187; (n)
Chandrasekhar, S.; Ramachandar, T.; Shyamsunder, T. Indian J. Chem., Sect. B
O
S
"
"
" I "
S
I
H O
2
S
R1
R2
R1
R2
very slow
R1
R2
2004, 43B, 813–838; (o) Chandrasekhar, S.; Jaya Prakash, S.; Shyamsunder, T.;
Scheme 5.
Ramachandar, T. Synth. Commun. 2005, 35, 3127–3131.