Angewandte Chemie International Edition
10.1002/anie.202107018
RESEARCH ARTICLE
Figure 4. (a) Energies (in eV) and isosurfaces of HOMOs and LUMOs of UiO-
Acknowledgements
66(Zr) and W/UiO-66(Zr)-0.12 at theoretical level. (b) Leaching and quenching
experiments over W/UiO-66(Zr)-0.12 in the ODS reaction of DBT. (c) Proposed
reaction mechanism. Reaction conditions: catalyst (30 mg), model oil (10 mL),
This work was supported by National Natural Science Foundation
of China (22022508), Science and Technology Key Project of
Guangdong Province of China (2020B010188002), and China
Postdoctoral Science Foundation (2020M672806).
o
acetonitrile (5 mL), DBT (500 ppm), oxidant (H
2 2
O ), O/S molar ratio (4:1), 30 C,
p-benzoquinone (0.9 mmol) or tertiary butanol (1.8 mmol).
According to previous reports, the oxidation mechanism of
sulfur compounds by H O over W-based catalysts was known to
2 2
Keywords: Single site • Tungsten • UiO-66(Zr) • Solvent-free •
Oxidative desulfurization
execute via a peroxo-metal pathway referred to W(VI) without
changing the oxidation state of W.[4,11,48,50] To confirm the above
hypothesis, leaching and quenching experiments were carried out.
When W/UiO-66(Zr)-0.12 was filtered out of the reaction system
at a reaction time 5 min, the catalytic activity was almost
completely inhibited, and confirmed that no leaching had occurred
and that no plentiful radicals had been produced (Figure 4b). The
catalytic performance was not strongly affected, when tertiary
butanol (TBA, scavenger for HO•), p-benzoquinone (BQ,
[
1]
2]
Y. Y. Sun, R. Prins, Angew. Chem., Int. Ed. 2008, 47, 8478-8481.
B. Van De Voorde, M. Boulhout, F. Vermoortele, P. Horcajada, D. Cunha,
J. S. Lee, J. S. Chang, E. Gibson, M. Daturi, J. C. Lavalley, A. Vimont, I.
Beurroies, D. E. De Vos, J. Am. Chem. Soc. 2013, 135, 9849-9856.
M. Bagheri, M. Y. Masoomi, O. Morsali, ACS Catal. 2017, 7, 6949-6956.
G. Ye, L. L. Hu, Y. L. Gu, C. Lancelot, A. Rives, C. Lamonier, N. Nuns,
M. Marinova, W. Xu, Y. Y. Sun, J. Mater. Chem. A 2020, 8, 19396-19404.
L. Sun, Z. Zhu, T. Su, W. Liao, D. Hao, Y. Chen, Y. Zhao, W. Ren, H. Ge,
H. Lü, Appl. Catal. B: Env. 2019, 255, 117747.
[
[
3]
[4]
[5]
[6]
•
−
scavenger for O
2
) or TBA and BQ added into the reaction
system.[
4,12]
The results suggested that HO• and O
•−
L. D. Hao, M. J. Hurlock, G. D. Ding, Q. Zhang, Topics Curr. Chem. 2020,
2
, as
378, 17.
confirmed by EPR experiment (Figure S38),[12,13,51] play a minor
role. The leaching and quenching experiments confirmed that
W(VI)-peroxo intermediates should play the key role in ODS
reaction. It has been reported that defective UiO-66(Zr) can
[
7]
8]
G. J. Lv, S. L. Deng, Z. Yi, X. B. Zhang, F. M. Wang, H. C. Li, Y. Q. Zhu,
Chem. Commun. 2019, 55, 4885-4888.
[
S. Smolders, T, Willhammar, A. Krajnc, K. Sentosun, M. T. Wharmby, K.
A. Lomachenko, S. Bals, G. Mali, M. B. J. Roeffaers, D. E. De Vos, B.
Bueken, Angew. Chem. Int. Ed. 2019, 58, 9160-9165.
•−
and HO•
catalyze the decomposition of H
2
O
2
and generate O
2
radicals.[4,13,51] Based on the above results, a plausible reaction
mechanism is illustrated in Figure 4c. At first, sulfur compounds
in model oil can be easily extracted into acetonitrile and adsorbed
[9]
X. Chang, X. F. Yang, Y. Qiao, S. Wang, M. H. Zhang, J. Xu, D. H. Wang,
X. H. Bu, Small 2020, 16, 1906432.
[
[
[
10] W. S. Zhu, P. Wu, L. Yang, Y. Chang, Y. Chao, H. M. Li, Y. Q. Jiang, W.
Jiang, S. H. Xun, Chem. Eng. J. 2013, 229, 250-256.
in the mesopores of catalyst with H
W species to form W(VI)-peroxo.[
2
O
2
. Most H
2
O
2
reacted with
11] Y. Du, L. Zhou, Z. H. Liu, Z. R. Guo, X. Z. Wang, J. H. Le, Chem. Eng. J.
11,47,50]
The adsorbed sulfur
2020, 387, 124056.
compounds could be oxidized into sulfoxide, then further oxidized
into sulphone, as confirmed by the mass spectrum (Figure S39).
12] G. Ye, Y. L. Gu, W. Zhou, W. Xu, Y. Y. Sun, ACS Catal. 2020, 10, 2384-
2394.
•−
and HO•
Meanwhile, H
2
O
2
was partially decomposed into O
2
[13] L. Hao, S. A. Stoian, L. R. Weddlea, Q. Zhang, Green Chem. 2020, 22,
radicals by Zr-OH sites in defective UiO-66(Zr), which also can
oxidize sulfur compounds into sulphone.[4,48] The emerged
mesopores in W/UiO-66(Zr), with pore size (~38.0 Å) larger than
the molecular sizes of DBT and 4,6-DMDBT, also facilitate the
catalytic process for providing sulfur compounds with better
accessibility to single W sites.
6351-6356.
[14]
H. Zhang, X. Xu, H. Lin, M. Aizaz Ud Din, H. Wang, X. Wang, Nanoscale
017, 9, 13334-13340.
15] B. Wang, J. P. Zhu, H. Z. Ma, J. Hazard. Mater. 2009, 164, 256-264.
2
[
[
16] A. M. Kermani, A. Ahmadpour, T. R. Bastamib, M. Ghahramaninezhad,
New J. Chem. 2018, 42, 12188-12197.
[
17] H. Wang, C. X. Shi, S. H. Chen, R. Chen, P. C. Sun, T. H. Chen, ACS
Appl. Nano Mater. 2019, 2, 6602-6610.
[18] Y. C. Wei, M. Zhang, P. W. Wu, J. Luo, L. Dai, H. P. Li, L. G. Wang, Y.
B. She, W. S. Zhu, H. M. Li, ACS Sustainable Chem. Eng. 2020, 8, 1015-
Conclusion
1
022.
19] C. C. Hou, H. F. Wang, C. X. Lia, Q. Xu, Energy Environ. Sci. 2020, 13,
658-1693.
20] X. Y. Li, H. P. Rong, J. T. Zhang, D. S. Wang, Y. D. Li, Nano Res. 2020,
3, 1842-1855.
[
[
In summary, we developed a facile one-pot approach to
prepare W/UiO-66(Zr) with atomic dispersion of tungsten sites
and hierarchical porosity under the solvent-free condition. The
structural characterization confirmed that single W sites were
anchored on the nodes of UiO-66(Zr) via forming Zr-O-W bonds.
The loading content of single W sites via this approach can reach
1
1
[21] C. Gao, J. X. Low, R. Long, T. T. Kong, J. F. Zhu, Y. J. Xiong, Chem.
Rev. 2020, 120, 12175-12216.
[
[
[
[
22] T. T. Sun, L. B. Xu, D. S. Wang, Y. D. Li, Nano Res. 2019, 12, 2067-
2080.
1
2.7 wt.%. W/UiO-66(Zr)-0.12 with the suitable number of single
23] S. Chen, Y. Zhou, J. Y. Li, Z. D. Hu, F. Dong, Y. X. Hu, H. Q. Wang, L.
Z. Wang, K. K. Ostrikov, Z. B. Wu, ACS Catal. 2020, 10, 10185-10196.
24] K. Otake, Y. Cui, C. T. Buru, Z. Li, J. T. Hupp, O. K. Farha, J. Am. Chem.
Soc. 2018, 140, 8652-8656.
W sites and mesoporosity displayed extraordinary ODS activity
for the removal of DBT and 4,6-DMDBT, achieving a complete
removal of sulfur (up to 1000 ppm) within 30 min at 30°C. The
TOF number (132.0 h-1 for DBT) at 50°C is at least 2 times higher
than that of the reported catalysts. Theoretical study indicated that
the introduction of single-W-sites play a vital role to determine
catalytic rate. Our work demonstrated the high-efficiency
desulfurization of fuel oil with W-SSCs UiO-66(Zr) at very mild
conditions, and indicates that the solvent-free approach SSCs
can be extended to rapid synthesis of other SSC systems for
various applications.
25] C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Angew. Chem. Int. Ed. 2017, 56,
13944-13960.
[26] W. X. Chen, J. Pei, C. He, J. W. Wan, H. Ren, Y. Wang, J. Dong, K. Wu,
W. C. Cheong, J. Mao, X. Zheng, W. Yan, Z. Zhuang, C. Chen, Q. Peng,
D. S. Wang, Y. D. Li, Adv. Mater. 2018, 30, 1800396.
[
27] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M.
Yaghi, Science 2002, 295, 469-472.
[
28] J. R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38, 1477-1504.
29] W. S. Zhao, G. D. Li, Z. Y. Tang, Nano Today 2019, 27, 178-197.
[
5
This article is protected by copyright. All rights reserved.