Page 7 of 9
Journal of the American Chemical Society
CO2Me
CO2Me
‡
These authors contributed equally.
MeO2C CO2Me
1
2
3
4
5
6
7
8
9
Me 3a
PdL*
Notes
2a
The authors declare no competing financial interest.
N
ACKNOWLEDGMENT
CO2Me
CO2Me
PdL*
Me
We appreciate the NIH (GM-033049) and the NSF (CHE-
1360634) for their generous support of our programs.
Me
CO2Me
CO2Me
Me
N
a H
1
N
PdL*
I
V
+
H
BEt3
N
II
REFERENCES
BEt3
Me
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
N
BEt3
1
2
For recent reviews, see: a) Ishikura, M.; Abe, T.; Choshi, T.;
Hibino, S. Nat. Prod. Rep. 2013, 30, 694. b) Ishikura, M.; Abe,
T.; Choshi, T.; Hibino, S. Nat. Prod. Rep. 2015, 32, 1389.
For isolation of pseudophrynamine A, see: a) Spande, T. F.; Ed-
wards, M. W.; Pannell, L. K.; Daly, J. W.; Erspamer, V.; Melchi-
orri, P. J. Org. Chem. 1988, 53, 1222. For its recent synthesis,
see: b) Cozzi, P. G.; Palazzi, C.; Potenza, D.; Scolastico, C.; Sun,
W. Y. Tetrahedron Lett. 1990, 31, 5661. For isolation of Borre-
verine, see: c) Tillequin, F.; Koch, M.; Bert, M.; Sevenet, T. J.
Nat. Prod. 1979, 42, 92. For its recent synthesis, see: d) Dethe, D.
H.; Erande, R. D.; Dherange, B. D. Org. Lett. 2014, 16, 2764. For
isolation of aspidophylline A, see: e) Subramaniam, G.; Hiraku,
O.; Hayashi, M.; Koyano, T.; Komiyama, K.; Kam, T. S. J. Nat.
Prod. 2007, 70, 1783. For its recent synthesis, see: f) Zu, L.;
Boal, B. W.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 8877. For
isolation of vindolinine, see: g) Janot, M.-M.; Le Men, J.; Fan, C.
Bull. Soc. Chim. Fr. 1959, 891. For structural studies of aspido-
spermidine, see: h) Biekmann, K.; Spiteller-Friedmann, M.;
Spiteller, G. J. Am. Chem. Soc. 1963, 85, 631. For its recent syn-
thesis, see: i) Shemet, A.; Carreira, E. M. Org. Lett. 2017, 19,
5529.
Maynart, G.; Pousset, J. L.; Mboup, S.; Denis, F. C. R. Seances
Soc. Biol. Ses Fil. 1980, 174, 925.
For a recent example, see Wang, C. H.; Alluri, S.; Nikogosyan,
G.; DeCarlo, C.; Monteiro, C.; Mabagos, G.; Feng, H. H.; White,
A. R.; Bartolini, M.; Andrisano, V.; Zhang, L. K.; Ganguly, A. K.
Tetrahedron Lett. 2016, 57, 3046.
For recent reviews, see: a) Repka, L. M.; Reisman, S. E. J. Org.
Chem. 2013, 78, 12314. b) Zhuo, C.-X.; Zhang, W.; You, S.-L.
Angew. Chem., Int. Ed. 2012, 51, 12662. And references therein.
For recent reviews, see: a) Trost, B. M.; Brennan, M. K. Synthesis
IV
CO2Me
CO2Me
H
PdL*
III
Figure 6. Proposed catalytic cycle.
position to deliver the indolenine/palladium complex V and
releases the triethylborane for next association cycle with the
starting indole 1a. As the borane strongly binds to the indole
nitrogen of IV, the N-allylation process is inhibited. Finally,
decomplexation of complex V liberates the product 3a and
then turns over the catalytic cycle.
CONCLUSION
In summary, we have reported the first use of VCP deriva-
tives as electrophiles for the asymmetric allylation of C3-
substituted-1H indoles and tryptophan derivatives. Utilizing
Pd (dba) •CHCl and stilbene-derived Trost ligand L , a broad
3
4
2
3
3
4
range of 3,3-disubstituted- indolenines and indolines has been
prepared in a highly chemo-, regio-, and enantioselective fash-
ion. This completely atom-economic transformation enables
indoles bearing a pendant C3-nucleophile to cleanly react with
VCPs, whereas employing a Lewis acid might be problematic.
The reaction can be performed on gram scale. The stereo-
chemical outcomes of asymmetric functionalizations of tryp-
tophan derivatives are well controlled by the chiral ligands,
allowing us to expeditiously synthesize mollenine A. The
indolenine products can be elaborated to intricate polycyclic
compounds by making use of the newly installed imine and
internal olefin motifs. More importantly, VCPs, like no other
allylation reagents, introduce a nucleophilic malonate substit-
uent through the Pd-AAA, providing an excellent handle for
additional product derivatization.
5
6
2
2
009, 3003. b) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Synth. Catal.
010, 352, 1381. For selected examples, see: c) Kato, Y.; Fu-
rutachi, M.; Chen, Z.; Mitsunuma, H.; Matsunaga, S.; Shibasaki,
M. J. Am. Chem. Soc. 2009, 131, 9168. d) Trost, B. M.; Malhotra,
S.; Chan. W. H. J. Am. Chem. Soc. 2011, 133, 7328. e) Trost, B.
M.; Xie, J. Sieber, J. D. J. Am. Chem. Soc. 2011, 133, 20611. f)
Mitsunuma, H.; Shibasaki, M.; Kanai, M.; Matsunaga, S. Angew.
Chem., Int. Ed. 2012, 51, 5217.
For recent reviews on Pd-AAA, see: a) Trost, B. M.; Crawley, M.
L. Chem. Rev. 2003, 103, 2921. b) Trost, B. M.; Machacek, M.
R.; Aponick, A. Acc. Chem. Res. 2006, 39, 747. c) Trost, B. M.
and Fandrick, D. R. Aldrichimica Acta 2007, 40, 59.
Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. J. Am. Chem.
Soc. 2005, 127, 4592.
Tamaru, Y. Eur. J. Org. Chem. 2005, 2647.
Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314.
a) Liu, Y.; Du, H. Org. Lett. 2013, 15, 740. b) Gao, R.-D.; Xu,
Q.-L.; Zhang, B.; Gu, Y.; Dai, L.-X.; You, S.-L. Chem. - Eur. J.
7
8
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website.
9
1
0
Experimental details, compound characterization data, and spectra
11
(
PDF)
2
016, 22, 11601. c) Gao, R.-D.; Ding, L.; Zheng, C.; Dai, L.-X.;
You, S.-L. Org. Lett. 2018, 20, 748. For examples of Pd-
catalyzed non-asymmetric intermolecular allylation of indoles us-
ing allyl carbonates, see: d) Kagawa, N.; Malerich, J. P.; Rawal,
V. H. Org. Lett. 2008, 10, 2381. e) Zhu, Y.; Rawal, V. H. J. Am.
Soc. Chem. 2012, 134, 111.
AUTHOR INFORMATION
Corresponding Author
*
12
a) Zhang, X.; You, S.-L. Chem. Sci. 2014, 5, 1059. b) Zhang, X.;
Liu, W.-B.; Tu, H.-F.; You, S.-L. Chem. Sci. 2015, 6, 4525.
Author Contributions
7
ACS Paragon Plus Environment