Green Chemistry
Paper
For the long-run experiment, a modified three-feed system
was used as shown in Fig. 5 and also in Fig. S5.† Feed 1 con-
sisted of the aqueous surfactant solution (2 wt% TPGS-750-M;
P. S. Branco and R. S. Varma, ChemSusChem, 2014, 7, 24–
44.
2 (a) H. C. Erythropel, J. B. Zimmerman, T. M. de Winter,
L. Petitjean, F. Melnikov, C. H. Lam, A. W. Lounsbury,
K. E. Mellor, N. Z. Janković, Q. Tu, L. N. Pincus,
M. M. Falinski, W. Shi, P. Coish, D. L. Plata and
P. T. Anastas, Green Chem., 2018, 20, 1929–1961;
(b) M. C. Bryan, P. J. Dunn, D. Entwistle, F. Gallou,
S. G. Koenig, J. D. Hayler, M. R. Hickey, S. Hughes,
M. E. Kopach, G. Moine, P. Richardson, F. Roschangar,
A. Steven and F. J. Weiberth, Green Chem., 2018, 20, 5082–
5103; (c) D. Prat, A. Wells, J. Hayler, H. Sneddon,
C. R. McElroy, S. Abou-Shehada and P. J. Dunn, Green
Chem., 2016, 18, 288–296; (d) R. K. Henderson, C. Jiménez-
González, D. J. C. Constable, S. R. Alston, G. G. A. Inglis,
G. Fisher, J. Sherwood, S. P. Binks and A. D. Curzons, Green
Chem., 2011, 13, 854–862.
2
0
40 mL) and Pd/C (126 mg 5 wt% Pd/C – 500 ppm or
.05 mol% Pd). Feed 2 contained a neat mixture of 4-fluoro-
benzaldehyde and 1.2 equiv. of Et
3
SiH, while feed 3 comprised
neat aniline. Feed 1 was pumped at a flow rate of 415 µL
−
1
−1
−1
min , feed 2 at 62 µL min and feed 3 at 22 µL min
.
Similarly as in the single feed experiments, the flow reactor
was pressurized at 3 bar and heated at 60 °C, while the pulsa-
tor was set to 0.24 mL (approx. 50%) pulsation amplitude and
0
.6 Hz (20%) pulsation frequency. The product mixture was
collected for 7 h under steady state conditions into separate
fractions in every hour. Each fraction was extracted with a
minimal amount of EtOAc (2 × 10 mL). The organic layers were
combined and the solvent was removed under reduced
pressure. The obtained material was purified by filtration
through a silica plug in order to afford the corresponding ana-
lytically pure product (15.0 g, 85% yield over 7 h collection
time).
3 (a) M. Cortes-Clerget, J. Yu, J. R. A. Kincaid, P. Walde,
F. Gallou and B. H. Lipshutz, Chem. Sci., 2021, 12, 4237–
4266; (b) T. Kitanosono, K. Masuda, P. Xu and
S. Kobayashi, Chem. Rev., 2018, 118, 679–746;
(
c) B. H. Lipshutz and S. Ghorai, Green Chem., 2014, 16,
Conflicts of interest
3660–3679; (d) M. B. Gawande, V. D. B. Bonifácio,
R. Luque, P. S. Branco and R. S. Varma, Chem. Soc. Rev.,
There are no conflicts to declare.
2013, 42, 5522–5551; (e) A. Chanda and V. V. Fokin, Chem.
Rev., 2009, 109, 725–748; (f) D. Dallinger and C. O. Kappe,
Chem. Rev., 2007, 107, 2563–2591.
R. Breslow, in Handbook of Green Chemistry, ed.
P. T. Anastas, Wiley–VCH, 2010, pp. 1–29.
Acknowledgements
4
5
The CCFLOW Project (Austrian Research Promotion Agency
FFG no. 862766) is funded through the Austrian COMET
Program by the Austrian Federal Ministry of Climate
Protection, Environment, Energy, Mobility, Innovation and
Technology (BMK), the Austrian Federal Ministry for Digital
and Economic Affairs (BMDW), and by the State of Styria
(a) B. H. Lipshutz, J. Org. Chem., 2017, 82, 2806–2816;
(
b) B. H. Lipshutz, F. Gallou and S. Handa, ACS Sustainable
Chem. Eng., 2016, 4, 5838–5849; (c) G. La Sorella, G. Strukul
and A. Scarso, Green Chem., 2015, 17, 644–683.
(a) S. R. K. Minkler, N. A. Isley, D. J. Lippincott, N. Krause
and B. H. Lipshutz, Org. Lett., 2014, 16, 724–726;
6
(
Styrian Funding Agency SFG). Z.N. acknowledges the support
of National Research, Development and Innovation Office
NKFIH, K132077) and the ELTE Thematic Excellence
(
b) A. Krasovskiy, C. Duplais and B. H. Lipshutz, Org. Lett.,
010, 12, 4742–4744; (c) A. Krasovskiy, C. Duplais and
B. H. Lipshutz, J. Am. Chem. Soc., 2009, 131, 15592–15593;
d) S. Shirakawa and S. Kobayashi, Org. Lett., 2007, 9, 311–
14.
2
(
Programme 2020 Supported by NKFIH - TKP2020-IKA-05. This
research was partially financed by the Ministry of Innovation
and Technology of Hungary from the National Research,
Development and Innovation Fund (2019-1.1.1-PIACI-KFI-2019-
(
3
7
8
(a) B. H. Lipshutz, N. A. Isley, J. C. Fennewald and
E. D. Slack, Angew. Chem., Int. Ed., 2013, 52, 10952–10958;
0
0070). The authors would like to thank Creaflow for the gen-
(
b) B. H. Lipshutz, S. Ghorai, W. W. Y. Leong, B. R. Taft and
erous loan of the HANU Reactor used in this study. The assist-
ance of Dr. Alejandro Mata-Gomez in the preliminary batch
experiments is gratefully acknowledged. The authors also
thank Prof. Walter Goessler for ICP-MS analysis.
D. V. Krogstad, J. Org. Chem., 2011, 76, 5061–5073.
(a) T. Lorenzetto, G. Berton, F. Fabris and A. Scarso, Catal.
Sci. Technol., 2020, 10, 4492–4502; (b) A. Steven, Synthesis,
2
019, 2632–2647; (c) B. H. Lipshutz, S. Ghorai and
M. Cortes-Clerget, Chem. – Eur. J., 2018, 24, 6672–6695;
d) D. Paprocki, A. Madej, D. Koszelewski, A. Brodzka and
R. Ostaszewski, Front. Chem., 2018, 6, 502.
(
References
1
(a) P. Cintas, S. Tabasso, V. V. Veselov and G. Cravotto,
Curr. Opin. Green Sustainable Chem., 2020, 21, 44–49;
9 B. H. Lipshutz, Johnson Matthey Technol. Rev., 2017, 61,
196–202.
(
b) M. Tavakolian, S. Vahdati-Khajeh and S. Asgari, 10 (a) M. Parmentier, M. Wagner, R. Wickendick,
ChemCatChem, 2019, 11, 2943–2977; (c) Z. Sainath and
P. Pravinkumar, Curr. Org. Chem., 2019, 23, 2295–2318;
M. Baenziger, A. Langlois and F. Gallou, Org. Process Res.
Dev., 2020, 24, 1536–1542; (b) D. J. Lippincott,
E. Landstrom, M. Cortes-Clerget, B. H. Lipshutz,
(
d) M. B. Gawande, V. D. B. Bonifácio, R. Luque,
This journal is © The Royal Society of Chemistry 2021
Green Chem., 2021, 23, 5625–5632 | 5631