Table 1 Hydroxylation of N-benzylpyrrolidine 1 by engineered cytochrome P450pyr variants
a
b
Description
Mutant
Amino acid changes
Conversion (%)
ee (%)
WT P450pyr
Round 1
NA
1AF4
NA
N100S
F403L
55
33
47
43 (S)
42 (R)
65 (S)
1
1BB12
Round 2
Round 3
No significantly improved mutants
1AF4A N100S, T186I
23
16
19
27
83 (R)
63 (R)
71 (R)
60 (R)
1
1
1
AF4B
AF4C
AF4D
N100S, T259S
N100S, L302V
N100S, V404K
a
Conversion determined based on substrate consumption with whole cell assay (10 g cell dry weight (cdw) per liter) using starting substrate
b
concentration of 5 mM. Biohydroxylation time was 4 h. Determined by chiral HPLC analysis using the Chiralcel OB-H (250 mm ꢁ 4.6 mm)
column. All verification experiments were carried out in shaking flasks in triplicate.
homology model, a large cavity allowing substrate access
to the heme site was observed, with hydrophobic residues lining
the entrance to the cavity. An interesting observation was that
the mutation sites 100, 403, and 186 were located near the
entrance of the cavity, suggesting that a benzyl ring–protein
interaction furthest from the heme may induce enantio-
selectivity towards 1 (See Fig. S2(b) in Supplementary
Informationz). The single amino acid substitution of the
Asn100 residue by Ser that caused a complete inversion of
the P450pyr enantioselectivity is of great interest. We reasoned
that changing the bigger hydrophilic Asn residue to the smaller
neutral Ser residue would increase the active-site volume and
alter the conformation of the helix containing the N100S upon
substrate binding, which may be responsible for the reversal of
enantioselectivity. When the neutral Thr residue was also
mutated to a hydrophobic Ile, the cooperative effect of the
two mutations increased the enantioselectivity towards the
4 D. Chang, H.-J. Feiten, K.-H. Engesser, J. B. van Beilen,
B. Witholt and Z. Li, Org. Lett., 2002, 4, 1859–1862; D. Chang,
H.-J. Feiten, B. Witholt and Z. Li, Tetrahedron: Asymmetry, 2002,
1
3
3, 2141–2147; D. Chang, B. Witholt and Z. Li, Org. Lett., 2000, 2,
949–3952; Z. Li, H.-J. Feiten, D. Chang, W. A. Duetz, J. B. van
Beilen and B. Witholt, J. Org. Chem., 2001, 66, 8424–8430.
M. T. Reetz, in Asymmetric Organic Synthesis with Enzymes,
ed. V. Gotor, I. Alfonso and E. Garcia-Urdiales, Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim, 2008, pp. 21–56.
5
6 X. Feng, G. B. Stephen, L. Jaka, I. Andrew, R. Zihe and W.
Luet-Lok, Angew. Chem., Int. Ed., 2005, 44, 4029–4032;
A. Glieder, E. T. Farinas and F. H. Arnold, Nat. Biotechnol.,
2
002, 20, 1135–1139.
7
8
9
R. Fasan, Y. T. Meharenna, C. D. Snow, T. L. Poulos and
F. H. Arnold, J. Mol. Biol., 2008, 383, 1069–1080.
O. Lentz, A. Feenstra, T. Habicher, B. Hauer, R. D. Schmid and
V. B. Urlacher, ChemBioChem, 2006, 7, 345–350.
T. S. Wong, F. H. Arnold and U. Schwaneberg, Biotechnol.
Bioeng., 2004, 85, 351–358.
10 O. Salazar, P. C. Cirino and F. H. Arnold, ChemBioChem, 2003, 4,
91–893.
8
1
1 S. Bartsch, R. Kourist and U. T. Bornscheuer, Angew. Chem., Int.
Ed., 2008, 47, 1508–1511; M. Ivancic, G. Valinger, K. Gruber and
H. Schwab, J. Biotechnol., 2007, 129, 109–122; Y. Koga,
K. Kato, H. Nakano and T. Yamane, J. Mol. Biol., 2003, 331,
(
(
R)-enantiomer by almost 2 fold. Interestingly, in both cases
N100S and T186I), the residue was replaced by a more
hydrophobic residue. The Phe403 in the WT P450pyr is
located in the middle of the cavity to the active site pocket,
thus providing a hydrophobic barrier for the hydrophilic
directing groups in incoming substrates. In the case of the
5
85–592; A. O. Magnusson, M. Takwa, A. Hamberg and K. Hult,
Angew. Chem., Int. Ed., 2005, 44, 4582–4585; O. May,
P. T. Nguyen and F. H. Arnold, Nat. Biotechnol., 2000, 18,
317–320; R. H. van Den Heuvel, M. W. Fraaije, M. Ferrer,
A. Mattevi and W. J. van Berkel, Proc. Natl. Acad. Sci. U. S. A.,
(
S)-enantioselective mutant, 11BB12, the aromatic hydro-
2
000, 97, 9455–9460.
phobic side chain of Phe was replaced by the aliphatic side
chain of Leu, thus slightly reducing the hydrophobicity which
may have directly or indirectly increased the mutant’s enantio-
selectivity towards the (S)-enantiomer due to conformational
changes at the entrance to the enzyme’s active site.
1
2 M. W. Peters, P. Meinhold, A. Glieder and F. H. Arnold, J. Am.
Chem. Soc., 2003, 125, 13442–13450.
3 S. Dey, D. R. Powell, C. Hu and D. B. Berkowitz, Angew. Chem.,
Int. Ed., 2007, 46, 7010–7014; Z. Li, L. Butikofer and B. Witholt,
Angew. Chem., Int. Ed., 2004, 43, 1698–1702.
1
1
1
1
4 N. Kizaki, Y. Yasohara and J. Hasegawa, 2006, US patent
7,033,808 B2.
5 N. Y. Kizaki, N. Nagashima and J. Hasegawa, J. Mol. Catal. B:
Enzym., 2008, 51, 73–80.
6 J. B. van Beilen, E. G. Funhoff, A. van Loon, A. Just, L. Kaysser,
M. Bouza, R. Holtackers, M. Rothlisberger, Z. Li and B. Witholt,
Appl. Environ. Microbiol., 2006, 72, 59–65.
In summary, we have demonstrated the first example of
improving the biohydroxylation enantioselectivity of a class I
P450 monooxygenase by iterative targeted site-saturation
mutagenesis combined with a colorimetric ee high-throughput
screening assay. Interestingly, one mutation at position 100
was all it took to invert the enantioselectivity of the P450pyr.
Financial support by the Science and Engineering Research
Council of A*STAR Singapore through a research grant
1
7 R. Woodyer, W. A. van der Donk and H. Zhao, Biochemistry,
2003, 42, 11604–11614.
8 J. K. Yano, L. S. Koo, D. J. Schuller, H. Li, P. R. Ortiz de
Montellano and T. L. Poulos, J. Biol. Chem., 2000, 275,
1
3
9 Y. Oku, A. Ohtaki, S. Kamitori, N. Nakamura, M. Yohda,
1086–31092.
(
Project No. 0621010024) is gratefully acknowledged.
1
H. Ohno and Y. Kawarabayasi, J. Inorg. Biochem., 2004, 98,
1
Notes and references
194–1199.
1
2
3
J. A. Labinger and J. E. Bercaw, Nature, 2002, 417, 507–514.
Z. Li and D. Chang, Curr. Org. Chem., 2004, 8, 1647–1658.
Z. Li, H.-J. Feiten, J. B. van Beilen, W. Duetz and B. Witholt,
Tetrahedron: Asymmetry, 1999, 10, 1323–1333.
20 M. T. Reetz, D. Kahakeaw and J. Sanchis, Mol. BioSyst., 2009, 5,
115–122; K. Chockalingam, Z. Chen, J. A. Katzenellenbogen and
H. Zhao, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 5691–5696;
N. U. Nair and H. Zhao, ChemBioChem, 2008, 9, 1213–1215.
This journal is ꢀc The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 5461–5463 | 5463