deprotonated the amide group of 5e to generate the ethylzinc
amidate. The zinc amidate was then coordinated with the O atom
of the proximal P=O group, forming the Lewis acid catalyst
precursors, in which several complicated species might be
included. When benzaldehyde was added to the reaction mixture,
References
1.
(a) Fuji, K. Chem. Rev. 1993, 93, 2037–2066. (b) Corey, E. J.;
Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388–401. (c)
Ramon, D. J.; Yus, M. Curr. Org. Chem. 2004, 8, 149–183.
(a) Noyori, R.; Kitamura, M.; Suga, S.; Kawai, K. J. Am. Chem.
Soc. 1986, 108, 6071–6072. (b) Noyori, R.; Suga, S.; Kawai, K.;
Okada, S.; Kitamura, M. J. Organomet. Chem. 1990, 382, 19–37.
(c) Noyori, R.; Kitamura, M. Angew. Chem., Int. Ed. Engl. 1991,
30, 49–69, and references therein. (d) Noyori, R.; Kitamura, M.;
Oka, H.; Suga, S. Chem. Eur. J. 1996, 2, 1173–1181.
2
3
.
.
2
the ethylzinc amidate, benzaldehyde and the reacting Et Zn might
form an assembly via coordination, among which the amidate
group, the O atom of benzaldehyde and two zinc ions constructed
a six-membered ring adopting a half-chair conformation (Figure
3
). For both transition states in Figure 3, the pseudo axial Et
Selected examples of amino alcohols and N,O-ligands for alkyl
zinc additions: (a) Palmieri, G. Eur. J. Org. Chem. 1999, 805–811.
group from Et Zn was hindered by the Et group from ethylzinc
2
amidate moiety. According to the transition state in Figure 3a, the
pseudo equatorial Et group would preferably attack the C=O
group of benzaldehyde from Re face to give the major (R)-
enantiomer of 1-phenyl-1-propanol. The minor (S)-enantiomer of
(b) Palmieri, G. Tetrahedron: Asymmetry 2000, 11, 3361–3373.
(c) Bolm, C.; Hermanns, N.; Hildebrand, J. P.; Muniz, K. Angew.
Chem., Int. Ed. 2000, 39, 3465–3467. (d) Bolm, C.; Kesselgruber,
M.; Hermanns, N.; Hildebrand, J. P.; Raabe, G. Angew. Chem.,
Int. Ed. 2001, 40, 1488–1490. (e) Bolm, C.; Hildebrand, J. P.;
Muniz, K.; Hermanns, N. Angew. Chem., Int. Ed. 2001, 40, 3284–
1
-phenyl-1-propanol could be produced through the transition
state in Figure 3b, which was less favored due to possible
repulsion between the attacking Et group and the Ph group of
benzaldehyde. The generally moderate ee could be ascribed to
the moderately selective control of the configuration of
benzaldehyde in the transition state assembly by the chiral zinc
catalyst, which seems hard to be further improved by modifying
3
308. (f) Rudolph, J.; Rasmussen, T.; Bolm, C.; Norrby, P.-O.
Angew. Chem., Int. Ed. 2003, 42, 3002–3005. (g) Ahern, T.;
Muller-Bunz, H.; Guiry, P. J. J. Org. Chem. 2006, 71, 7596–7602.
(h) Nottingham, C.; Benson, R.; Muller-Bunz, H.; Guiry, P. J. J.
Org. Chem. 2015, 80, 10163−10176. (i)Tanaka, T.; Sano, Y.;
Hayashi, M. Chem. Asian J. 2008, 3, 1465–1471. (j) Trost, B. M.;
Ngai, M.-Y.; Dong, G. Org. Lett. 2011, 13, 1900–1903.
the geminate aryl groups on the P atom.
4
.
For Shibasaki’s pioneering work of bifunctional acid–base
catalysis, see reviews: (a) Shibasaki, M.; Yoshikawa, N. Chem.
Rev. 2002, 102, 2187–2209. (b) Shibasaki, M.; Kanai, M.;
Funabashi, K. Chem. Commun. 2002, 1989–1999. (c) Kanai, M.;
Kato, N.; Ichikawa, E.; Shibasaki, M. Synlett 2005, 1491–1508.
(d) Kanai, M.; Kato, N.; Ichikawa, E.; Shibasaki, M. Pure Appl.
Chem. 2005, 77, 2047–2052. (e) Shibasaki, M.; Matsunaga, S.
Chem. Soc. Rev. 2006, 35, 269–279. In particular, for catalysts
with P=O moiety, see: (f) Hamashima, Y.; Sawada, D.; Kanai, M.;
Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 2641–2642. (g)
Takamura, M.; Hamashima, Y.; Usuda, H.; Kanai, M.; Shibasaki,
M. Angew. Chem., Int. Ed. 2000, 39, 1650–1652. (h) Takamura,
M.; Funabashi, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
t-Bu
t-Bu
t-Bu
t-Bu
N
O
N
O
Et
P
Et
Et
P
Et
O
t-Bu
Zn
t-Bu
Zn
Zn
O
O
Zn
Re
O
Et
Et
Si
t-Bu
H
H
t-Bu
(a)
(b)
2
000, 122, 6327–6328. (i) Hamashima, Y.; Kanai, M.; Shibasaki,
Figure 3. Proposed transition state assembly of the addition
reaction: (a) Major one; (b) Minor one.
M. J. Am. Chem. Soc. 2000, 122, 7412–7413. (j) Funabashi, K.;
Ratni, H.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123,
1
0784–10785.
(a) Ishihara, K.; Hatano, M.; Miyamoto, T. Adv. Synth. Catal.
005, 347, 1561–1568. (b) Ishihara, K.; Hatano, M.; Miyamoto, T.
Conclusion
5.
2
J. Org. Chem. 2006, 71, 6474–6484. (c) Ishihara, K.; Hatano, M.;
Miyamoto, T. Syn. Lett. 2006, 11, 1762–1764. (d) Ishihara, K.;
Hatano, M.; Miyamoto, T. Org. Lett. 2007, 9, 4535–4538. (e)
Ishihara, K.; Hatano, M.; Mizuno, T. Chem. Commun. 2010, 46,
In conclusion, we disclosed chiral zinc amidate catalyzed
additions of Et
complexes of a new type of chiral spiro ligands bearing
carboxamide–phosphine oxide” functional groups worked as
2
Zn to aldehydes. The in situ formed Zn
5
443–5445. (f) Hatano, M.; Gouzu, R.; Mizuno, T.; Abe, H.;
“
Yamada, T.; Ishihara, K. Catal. Sci. Technol. 2011, 1, 1149–1158.
For a review, see: (g) Ishihara, K.; Sakakura, A.; Hatano, M.
Synlett 2007, 686–703.
effective catalysts. Excellent yields and moderate ee′s were
obtained for benzaldehyde derivatives. Possible transition states
were proposed according to the crystal structures of two chiral
ligands. Though the ee′s were only moderate, carboxamide acting
as an acidic group to introduce a Lewis acidic Zn center was
demonstrated for the first time, which is conceptually new and
might be of referential value for ligand design.
6
.
2
Chiral phosphonamide ligand in Et Zn addition to aldehydes: (a)
Brunel, J.-M.; Constantieux, T.; Legrand, O.; Buono, G.
Tetrahedron Lett. 1998, 39, 2961–2964. (b) Legrand, O.; Brunel,
J.-M.; Buono, G. Tetrahedron Lett. 1998, 39, 9419–9422. (c)
Legrand, O.; Brunel, J.-M.; Buono, G. Tetrahedron Lett. 2000, 41,
2
105–2109.
Chiral phosphinamide ligand in Et
Zong, H.; Huang, H.-Y.; Bian, G.-L.; Song, L. Tetrahedron Lett.
013, 54, 2722–2725. (b) Huang, H.-Y.; Zong, H.; Bian, G.-L.;
7
8
.
.
2
Zn addition to aldehydes: (a)
Acknowledgments
2
Song, L. J. Org. Chem. 2015, 80, 12614–12619.
For chiral phosphine oxides in asymmetric catalysis, see: (a) Hu,
J.; Hirao, H.; Li, Y.; Zhou, J. Angew. Chem., Int. Ed. 2013, 52,
Financial supports from Beijing Normal University and
National Natural Science Foundation of China (NSFC) are
acknowledged. This work was supported in part by a grant (No.
015BAK45B01) from Ministry of Science and Technology
MOST) of the People’s Republic of China. Prof. Jia-Xin Zhang,
Jin-Ping Qiao at College of Chemistry, Beijing Normal
University are acknowledged for assistance with NMR/HRMS
experiments. We thank Prof. Xiang Hao at Institute of Chemistry,
Chinese Academy of Science (ICCAS) for his help with XRD
analyses.
8
676–8680. (b) Hu, J.; Lu, Y.; Li, Y.; Zhou, J. Chem. Commun.
2
(
2013, 49, 9425–9427. (c) Qin, L.; Hirao, H.; Zhou, J. Chem.
Commun. 2013, 49, 10236–10238. (d) Liu, S.; Zhou, J. Chem.
Commun. 2013, 49, 11758–11760. (e) Wu, C.; Zhou, J. J. Am.
Chem. Soc. 2014, 136, 650−652. For a review, see: (f) Brunel, J.
M.; Buono, G. Top. Curr. Chem. 2002, 79–105.
9
.
(a) Meyers, A. I.; Hanreich, R.; Wanner, K. T. J. Am. Chem. Soc.
1
985, 107, 7776−7778. (b) Meyers, A. I.; Lefker, B. A.; Wanner,
K. T.; Aitken, R. A. J. Org. Chem. 1986, 51, 1936−1938. (c)
Meyers, A. I.; Wanner, K. T. Tetrahedron Lett. 1985, 26,
2
4
4
047−2050. (d) Meyers, A. I.; Lefker, B. A. Tetrahedron 1987,
3, 5663−5676. (e) Romo, D.; Meyers, A. I. Tetrahedron 1991,
7, 9503−9569. (f) Meyers, A. I.; Burgess, L. E. J. Org. Chem.