F. Barba et al. / Tetrahedron Letters 50 (2009) 6798–6799
6799
+
+ e
-
References and notes
Ar-N=N
Ar
.
Ar
.
+ N2
Ar N2
S
1. Standfest-Hauser, C. M.; Mereiter, K.; Schmidt, R.; Kirchner, K. Organometallics.
004, 23, 2194–2196.
2. Mitin, Y.; Zapevalova, N. P. Zh. Obshch. Khim. 1974, 44, 2074–2075.
2
.
Ar-S + CS
.
Ar
.
+ CS2
S
3
4
.
.
Canuti, A.M.; Coraluppi, E. EP763774. 1997. CAN 126: 299644.
Verbruggen, M. A. L.; Van der Does, L.; Noordermeer, J. W. M.; Van Duin, M. J.
Appl. Polym. Sci. 2008, 109, 976–986.
dimerization
S
Ar
5. Wang, Z.-L.; Tang, R.-Y.; Luo, P.-S.; Deng, Ch.-L.; Zhong, P.; Li, J.-H. Tetrahedron
008, 64, 10670–10675; . Tetrahedron 2009, 65, 579.
S
Ar
2
6
.
Simonet, J.; Pilard, J.-F. In Organic Electrochemistry; Lund, H., Hammerich, O.,
Eds., 4th ed.; Marcel Dekker: NY, 2001; p 1214. Chapter 9.
Wohlfahrt, T. J. Prakt. Chem 1902, 66, 551–557.
Dhar, P.; Ranjan, R.; Chandrasekaran, S. J. Org. Chem 1990, 55, 3728–3729. and
references cited therein.
Scheme 1. Proposed pathway formation of diaryl disulfides.
7
8
.
.
CH
3
S
S
CH
3
S
S
9. Guo, H.; Wang, J. Q.; Zhang, Y. Synth. Commun. 1997, 27, 85–87.
10. Liu, Y.; Zhang, Y. Tetrahedron Lett. 2003, 44, 4291–4294.
.
S
11. Leite, S. L. S.; Pardini, V. L.; Viertler, H. Synth. Commun. 1990, 20, 393–
.
397.
-
3
CH .
S
12. Khazaei, A.; Zolfigol, M. A.; Rostmai, A. Synthesis 2004, 2959–2961.
(
b)
(
a)
13. Mohammadpoor-Baltork, I.; Memarian, H. R.; Bahrami, K. Phosphorus, Sulfur,
Silicon 2004, 179, 2315–2321.
-
CS
S
S
14. Benati, L.; Montevecchi, P. C. J. Org. Chem. 1976, 41, 2639–2640.
S
S
CH
3
15. Bhar, D.; Chandrasekaran, S. Synthesis 1994, 785–786.
16. Pinnick, H. W. J. Org. Chem. 1980, 45, 930–932.
17. Campaigne, E. E. J. Org. Chem. 1961, 26, 2486–2491.
1
8. Overberger, C. G. J. Am. Chem. Soc. 1956, 78, 4792–4797.
dimerization
3
j
S
S
S
CH
3
19. Fujihara, H. Bull. Chem. Soc. Jpn. 1989, 62, 616–617.
2j
20. Tajbakhsh, M. J. Chem. Res. 2007, 486–489.
21. Olah, G. A. J. Org. Chem. 1981, 46, 2408–2410.
22. Banfield, S. C. J. Org. Chem. 2007, 72, 4989–4992.
S
.
3
H C S
Scheme 2. Common intermediate (b) in the formation of 2j and 1,3-benzodithiole-
-thione (3j).
23. Walker, D. J. Org. Chem. 1963, 28, 3077–3082.
24. Meier, H. Chem. Ber. 1984, 117, 107–126.
2
2
2
2
2
5. Paquer, D. Recl. Trav. Chim. Pays-Bas 1978, 97, 88.
6. Goldfarb, Y. Izvestiya Akad. Nauk SSSR, Ser. Khim. 1966, 1426–1432.
7. Batanero, B.; Saez, R.; Barba, F. Electrochim. Acta 2009, 54, 4872–4879.
8. Nonhebel, D.C.; Walteu. Free radical Chemistry. Structure and Mechanism;
Cambridge at the University Press, 1974, p 546.
´
.
.
CH -S + CS
3
CH3
.
+
S=C=S
CH
3
-S-C=S
29.
Mp: 164–166 °C [lit. 164–165 °C (Nakayama, J. Chem. Lett. 1977, 127–
1
30)].
+
+
+
3
0. GC–MS (EI): m/z (%) = 204 (M +2, 5), 202 (M , 36), 187 (M À15, 17), 172
+
+
+
S CH
3
S CH
3
(M À15–15, 10), 156 (M ÀCH
S (McLafferty), 93), 153(78), 141 (M ÀCH
2
S-15,
2
.
10), 91(100).
CH -S
+
3
3
1. The electroactive diazonium tetrafluoroborates were prepared according to
conventional methods (Organic Reactions; Krieger, R.E., Ed.; Publishing
Company: Huntington, NY, 1977; Vol. V, pp 198–228).The electrochemical
reductions were performed under potentiostatic conditions in a concentric cell
with two compartments separated by a low porosity (D4) glass frit diaphragm
and equipped with a magnetic stirrer. The temperature was maintained
constant at 0 °C with a cryostat. A graphite electrode was used as the cathode, a
S.
S
S-CH
3
Scheme 3. Radical coupling formation of methyl 2-(methyl thio)phenyl disulfide.
available for coordination with the radical, since a bond between
the radical and the substrate can then be formed before any bonds
are broken.
+
platinum plate as the anode, and a saturated Ag/Ag electrode as the reference.
2
8
The SSE (solvent-supporting-electrolyte) was CS /EtOH (20:50) containing
2
0.1 M tetrabutylammonium perchlorate.The aryldiazonium tetrafluoroborate
When the diazonium salt of 2-methylthioaniline (1j) was re-
duced, together with the corresponding disulfide 2j (70% yield),
(
2.0 mmol) was added, in small solid portions for 4 h, to the cathodic
compartment, to be electrolyzed at a constant potential of À0.5 V (vs Ag/
+
Ag ). The slow addition of the substrate was made in order to avoid the
1
,3-benzodithiole-2-thione29 (3j) (15%) was obtained. The forma-
dimerization of the aryl radical.The substrate can be reduced faster at a
mercury cathode; however, the electrogenerated aryl radicals evolve in the
presence of mercury to undesired organomercury compounds.Once the
reaction was finished the cathodic solution was removed under reduced
tion of this product can be explained as follows: the reaction starts,
as described above, with the formation of the radical a. But this
radical is able to intramolecularly attack the sulfur atom of the
methylthio group (again the vacant d orbitals at the sulfur are
available for coordination) giving the intermediate b, which
evolves to 2j after dimerization or to 3j through a methyl radical
evolution (see Scheme 2).
The methyl radical reacts with CS (solvent) to afford a methyl-
2
thio radical which can be coupled with any of the radicals present
in the solution to give, for instance, methyl 2-(methylthio)phenyl
pressure. The residue was then extracted with ether/H
2
O. The organic phase
was dried over MgSO and concentrated by evaporation. The resulting
4
disulfides were purified by flash chromatography on Silica Gel 60 (35–70
mesh) in a (12 Â 2.5 cm) column, using mixtures Tol/Hex (1:20) (2a–g, 2j and
2 2
2k) and CH Cl /EtOH (100:1) (2h, 2i) as eluents. The physical and
spectroscopical properties of the obtained diaryl disulfides were coincident
with those already described in the literature. However, IR or NMR is not very
resolutive in this case, and the experimental MS spectra of 2 are given:MS (EI):
+
+
m/z (%) (2a): 219 (M +1, 12), 218 (M , 84), 185(14), 154(16), 140(6), 109(100),
+
6
1
5(29). (2b): 278 (M , 11), 260(5), 200(33), 172(18), 171(28), 140(49),
39(100), 125(26), 108(35), 97(21), 95(26). (2c): 275 (M +1, 23), 274 (M ,
30
disulfide (Scheme 3) detected by GC–MS.
+
+
The presented methodology31 is clearly a convenient and useful
alternative that can be generalized to the obtention of diaryl disul-
fides from anilines.
100), 260(19), 210(23), 195(23), 181(24), 137(81), 135(38), 123(35), 91(44).
+
+
(
(
2d): 247 (M +1, 12), 246 (M , 64), 213(6), 211(8), 123(100), 121(41), 91(88).
+
+
2e): 247 (M +1, 19), 246 (M , 100), 213(36), 198(23), 182(69), 167(42),
23(37), 121(14), 91(75). (2f): 290 (M +4, 11), 288 (M +2, 50), 286 (M , 64),
45(40), 143(100), 108(60). (2g): 378 (M +4, 16), 376 (M +2, 28), 374 (M , 13),
97(9), 295(9), 216(17), 189(44), 187(44), 108(100), 82(16). (2h): 303 (M +1,
0), 302 (M , 100), 287(70), 136(74), 108(17). (2i): 335 (M +1, 12), 334 (M ,
7), 303(16), 270(5), 239(8), 198(8), 184(18), 167(37), 139(63), 136(100),
+ + +
1
1
2
2
5
+ + +
+
Acknowledgment
+
+
+
+
+
This study was financed by the Spanish Ministry of Science and
Education CTQ2007-62612/BQU.
108(38), 82(19). (2j): 311 (M +1, 12), 310 (M , 62), 155(32), 121(9), 91(100).
+
(2k): 274 (M , 91), 241 (4), 168(9), 138(75), 137(90), 105(100), 91(53).