ACS Medicinal Chemistry Letters
Letter
(3) King, D. T.; Strynadka, N. C. J. Targeting metallo-β-lactamase
enzymes in antibiotic resistance. Future Med. Chem. 2013, 5, 1243−63.
(4) Bush, K. Proliferation and significance of clinically relevant β-
lactamases. Ann. N. Y. Acad. Sci. 2013, 1277, 84−90.
electron-donating group on the phenyl ring of aromatic N-
substituted carbamylmethyl mercaptoacetate thioethers im-
proves potency of the inhibitors, but an electron-accepting
group decreases potency. MIC assays demonstrated that 6 and 8
were able to inhibit L1 expressed by E. coli cells and restore the
antimicrobial activity of cefazolin to that observed with
susceptible cells not expressing L1. The other compounds may
not have been able to enter the bacteria and can be optimized in
that respect in future studies. Docking studies indicate that the
carboxyl group may coordinate the two Zn(II) ions in the active
site and hydrogen bond with Ser221 of L1, while the carbamyl
group oxygen may act as an additional ligand in the most potent
compound 5, thus rendering the inhibitor a chelating agent,
which was not observed with the previously observed
thioesters.24,25 Cytotoxicity tests revealed that 1, 5, 7, and 16
did not affect the viability of mammalian cells at a concentration
of up to 400 μM. This was expected due to the decreased
likelihood of thioethers to be hydrolyzed, which could result in
toxic thiols. These studies demonstrate that the N-substituted
carbamylmethyl mercaptoacetate thioethers represent a novel
scaffold for the future design of MβL inhibitors.
(5) Ambler, R. P. The structure of β-lactamases. Philos. Trans. R. Soc., B
1980, 289, 321−31.
(6) Drawz, S. M.; Bonomo, R. A. Three decades of β-lactamase
inhibitors. Clin. Microbiol. Rev. 2010, 23, 160−201.
(7) Garau, G.; García-Sae
́
z, I.; Bebrone, C.; Anne, C.; Mercuri, P.;
Galleni, M.; Frer
numbering scheme for class B β-lactamases. Antimicrob. Agents
Chemother. 2004, 48, 2347−9.
̀
e, J.-M.; Dideberg, O. Update of the standard
(8) Felici, A.; Amicosante, G.; Oratore, A.; Strom, R.; Ledent, P.; Joris,
B.; Fanuel, L.; Frere, J.-M. An overview of the kinetic parameters of class
B β-lactamases. Biochem. J. 1993, 291, 151−5.
(9) Lassaux, P.; Hamel, M.; Gulea, M.; Delbruck, H.; Mercuri, P. S.;
Horsfall, L.; Dehareng, D.; Kupper, M.; Frere, J.-M.; Hoffmann, K.;
Galleni, M.; Bebrone, C. Mercaptophosphonate compounds as broad-
spectrum inhibitors of the metallo-β-lactamases. J. Med. Chem. 2010, 53,
4862−76.
(10) Bebrone, C.; Lassaux, P.; Vercheval, L.; Sohier, J. S.; Jehaes, A.;
Sauvage, E.; Galleni, M. Current challenges in antimicrobial chemo-
therapy: focus on β-lactamase inhibition. Drugs 2010, 70, 651−79.
(11) Ehmann, D. E.; Jahic,
Reville, T. F.; Lahiri, S.; Thresher, J.; Livchak, S.; Gao, N.; Palmer, T.;
́
́
H.; Ross, P. L.; Gu, R. F.; Hu, J.; Durand-
ASSOCIATED CONTENT
* Supporting Information
■
Walkup, G. K.; Fisher, S. L. Kinetics of avibactam inhibition against class
A, C, and D β-lactamases. J. Biol. Chem. 2013, 288, 27960−71.
(12) McGeary, R. P.; Schenk, G.; Guddat, L. W. The applications of
binuclear metallohydrolases in medicine: recent advances in the design
and development of novel drug leads for purple acid phosphatases,
metallo-β-lactamases and arginases. Eur. J. Med. Chem. 2014, 76, 132−
44.
S
The Supporting Information is available free of charge on the
Experimental details; NMR and ESI mass data for target
compounds; stability data; inhibition data with additional
(13) Walter, M. W.; Felici, A.; Galleni, M.; Soto, R. P.; Adlington, R.
M.; Baldwin, J. E.; Frere, J.-M.; Gololobov, M.; Schofield, C. J.
Trifluoromethyl alcohol and ketone inhibitors of metallo-β-lactamases.
Bioorg. Med. Chem. Lett. 1996, 6, 2455−8.
AUTHOR INFORMATION
Corresponding Author
■
(14) Toney, J. H.; Hammond, G. G.; Fitzgerald, P. M.; Sharma, N.;
Balkovec, J. M.; Rouen, G. P.; Olson, S. H.; Hammond, M. L.; Greenlee,
M. L.; Gao, Y. D. Succinic acids as potent inhibitors of plasmid-borne
IMP-1 metallo-β-lactamase. J. Biol. Chem. 2001, 276, 31913−8.
(15) Hiraiwa, Y.; Saito, J.; Watanabe, T.; Yamada, M.; Morinaka, A.;
Fukushima, T.; Kudo, T. X-ray crystallographic analysis of IMP-1
metallo-β-lactamase complexed with a 3-aminophthalic acid derivative,
structure-based drug design, and synthesis of 3,6-disubstituted phthalic
acid derivative inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 4891−4.
(16) Mohamed, M. S.; Hussein, W. M.; McGeary, R. P.; Vella, P.;
Schenk, G.; Abd El-hameed, R. H. Synthesis and kinetic testing of new
inhibitors for a metallo-β-lactamase from Klebsiella pneumonia and
Pseudomonas aeruginosa. Eur. J. Med. Chem. 2011, 46, 6075−82.
(17) Simm, A. M.; Loveridge, E. J.; Crosby, J.; Avison, M. B.; Walsh, T.
R.; Bennett, P. M. Bulgecin A: a novel inhibitor of binuclear metallo-β-
lactamases. Biochem. J. 2005, 387, 585−90.
ORCID
Author Contributions
K.-W.Y. and P.O. conceived and designed the experiments,
analyzed the data, and wrote the paper. Y.-N.C. performed the
experiments. Y.-J.Z., Y.X., and C.C. purified proteins. Y.-J.Z.
performed cytotoxicity, and W.-M.W. performed ITC assays. All
authors have given approval to the final version of the
manuscript.
Funding
This work was supported by grants 21272186, 21572179, and
81361138018 (to K.W.Y.) from the National Natural Science
Foundation of China.
(18) Walter, M. W.; Valladares, M. H.; Adlington, R. M.; Amicosante,
G.; Baldwin, J. E.; Frere, J.-M.; Galleni, M.; Rossolini, G. M.; Schofield,
C. J. Hydroxamate inhibitors of Aeromonashydrophila AE036 metallo-β-
lactamase. Bioorg. Chem. 1999, 27, 35−40.
Notes
The authors declare no competing financial interest.
(19) Toney, J. H.; Fitzgerald, P. M. D.; Grover-Sharma, N.; Olson, S.
H.; May, W. J.; Sundelof, J. G.; Vanderwall, D. E.; Cleary, K. A.; Grant, S.
K.; Wu, J. K.; Kozarich, J. W.; Pompliano, D. L.; Hammond, G. G.
Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of
Bacteroides fragilis metallo-β-lactamase. Chem. Biol. 1998, 5, 185−96.
(20) Siemann, S.; Evanoff, D. P.; Marrone, L.; Clarke, A. J.; Viswanatha,
T.; Dmitrienko, G. I. N-arylsulfonyl hydrazones as inhibitors of IMP-1
metallo-β-lactamase. Antimicrob. Agents Chemother. 2002, 46, 2450−7.
(21) Cornaglia, G.; Giamarellou, H.; Rossolini, G. M. Metallo-β-
lactamases: a last frontier for β-lactams? Lancet Infect. Dis. 2011, 11,
381−93.
ABBREVIATIONS
ITC, isothermal titration calorimetry; MβL, metallo-β-lactamase;
MIC, minimum inhibitory concentration
■
REFERENCES
■
(1) Berendonk, T. U.; Manaia, C. M.; Merlin, C.; Fatta-Kassinos, D.;
Cytryn, E.; Walsh, F.; Burgmann, H.; Sorum, H.; Norstrom, M.; Pons,
M. N.; Kreuzinger, N.; Huovinen, P.; Stefani, S.; Schwartz, T.; Kisand,
V.; Baquero, F.; Martinez, J. L. Tackling antibiotic resistance: the
environmental framework. Nat. Rev. Microbiol. 2015, 13, 310−7.
(2) Anonymous. The antibiotic alarm. Nature 2013, 495, 141.
(22) Li, J.; Nation, R. L.; Turnidge, J. D.; Milne, R. W.; Coulthard, K.;
Rayner, C. R.; Paterson, D. L. Colistin: the re-emerging antibiotic for
E
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX