Running title
Chin. J. Chem.
Jia, L.; Yang, H.; Deng, J.; Chen, J.; Zhou, Y.; Ding, P.; Li, L.; Han,
N.; Li, Y. Copper-bismuth bimetallic microspheres for selective
electrocatalytic reduction of CO to formate. Chin. J. Chem. 2019,
7, 497-500.
(a) Anjass, M.; Lowe, G.; Streb, C. Molecular vanadium oxides for
energy conversion and energy storage: current trends and
emerging opportunities. Angew. Chem. Int. Ed. 2020, 255,
doi.org/10.1002/anie.202010577; (b) Zhang, L.-J.; Hu, Z.-J.;
Zhang, Z.; Guo, H.-Y. Synthesis and structure of a novel organic-
Selective aerobic oxidation of sulfides by cooperative polyimide-
titanium dioxide photocatalysis and triethylamine catalysis. J.
Colloid Interface Sci. 2020, 565, 614-622.
2
3
[18] (a) Feng, K.; Hao, H.; Huang, F.; Lang, X.; Wang, C. A 2D porphyrin-
based covalent organic framework with TEMPO for cooperative
photocatalysis in selective aerobic oxidation of sulfides. Mater.
Chem. Front. 2021, 5, 2255-2260; (b) Li, Q.; Lan, X.; An, G.;
Ricardez-Sandoval, L.; Wang, Z.; Bai, G. Visible-light-responsive
anthraquinone functionalized covalent organic frameworks for
metal-free selective oxidation of sulfides: effects of morphology
and structure. ACS Catal. 2020, 10, 6664–6675.
[
5]
inorganic hybrid polyoxovanadate, [Ni(bpp)
2
]
2
(V O12) (bpp=1,3-
4
bi-4-pyridylpropane). Chin. J. Chem. 2007, 25, 566-569.
Schreiber, E.; Petel, B.; Matson, E. Acid-induced, oxygen-atom
defect formation in reduced polyoxovanadate-alkoxide clusters.
J. Am. Chem. Soc. 2020, 142, 9915-9919.
Huang, X.; Gu, X.; Zhang, H.; Shen, G.; Gong, S.; Yang, B.; Wang,
Y.; Chen, Y. Decavanadate-based clusters as bifunctional catalysts
for efficient treatment of carbon dioxide and simulant sulfur
[
[
6]
7]
[19] (a) Hou, X.-Q.; Du, D.-M. Recent advances in squaramide-
catalyzed asymmetric Mannich reactions. Adv. Synth. Catal. 2020,
362, 4487-4512 (b) Fan, Z.; Wang, Z.; Cokoja, M.; Fischer, R.
Defect engineering: an effective tool for enhancing the catalytic
3
performance of copper-MOFs for the click reaction and the A
coupling. Catal. Sci. Technol. 2021, 11, 2396-2402.
mustard. J. CO
2
Util. 2021, 45, 101419-101427.
[20] (a) Khoshnavazi, R.; Bahrami, L.; Havasi, F.; Naseri, E. H
3
PW12O
40
[
[
8]
9]
Zhu, Y.; Huang, Y.; Li, Q.; Zang, D.; Gu, J.; Tang, Y.; Wei, Y.
Polyoxometalate-based photoactive hybrid: uncover the first
crystal structure of covalently linked hexavanadate-porphyrin
molecule. Inorg. Chem. 2020, 59, 2575-2583.
(a) Hayashi, Y. Hetero and lacunary polyoxovanadate chemistry:
synthesis, reactivity and structural aspects. Coord. Chem. Rev.
supported on functionalized polyoxometalate organic-inorganic
hybrid nanoparticles as efficient catalysts for three-component
Mannich-type reactions in water. RSC Adv. 2017, 7, 11510-11521;
(b) Li, W.-Y.; Zong, Y.-X.; Wang, J.-K.; Niu, Y.-Y. Sulfonated poly(4-
vinylpyridine) heteropolyacid salts: A reusable green solid
catalyst for Mannich reaction. Chin. Chem. Lett. 2014, 25, 575-
578; (c) Wan, R.; He, P.; Liu, Z.; Ma, X.; Ma, P.; Singh, V.; Zhang,
C.; Niu, J.-Y.; Wang, J.-P. A lacunary polyoxovanadate precursor
and transition-metal-sandwiched derivatives for catalytic
oxidation of sulfides. Chem. Eur. J. 2020, 26, 8760-8766.
2011, 255, 2270-2280; (b) Lü, Y.; Feng, Y. A Potassium-lithium
double salt of decavanadate showing unprecedented (6,8)-
connected topology. Chin. J. Chem. 2010, 28, 2404-2410.
[
[
[
[
[
10] An, H.; Zhang, J.; Chang, S.; Hou, Y.; Zhu, Q. 2D hybrid
architectures constructed from two kinds of polyoxovanadates as
efficient heterogeneous catalysts for cyanosilylation and
knoevenagel condensation. Inorg. Chem. 2020, 59, 10578-10590.
11] Naslhajian, H.; Amini, M.; Morteza F.; Farnia, S.; Janczak, J.
Synthesis and characterization of a new polyoxovanadate for the
[21] Long, D.-L.; Burkholder, E.; Cronin, L. Polyoxometalate clusters,
nanostructures and materials: from self assembly to designer
materials and devices. Chem. Soc. Rev. 2007, 36, 105-121.
[22] Sánchez-Lara, E.; Martínez-Valencia, B.; Corona-Motolinia, N.;
Sanchez-Gaytan, B.; Castro, M.; Bernès, S.; Méndez-Rojas, M.;
3
one-pot three-component (A ) coupling of aldehydes, amines
Meléndez-Bustamante, F.; González-Vergara, E. One-
A
and alkynes. Mol. Catal. 2020, 483, 110769-110776.
12] Huang, X.; Li, J.; Shen, G.; Xin, N.; Lin, Z.; Chi, Y.; Dou, J.; Li, D.; Hu,
C. Three Pd-decavanadates with a controllable molar ratio of Pd
to decavanadate and their heterogeneous aerobic oxidation of
benzylic C–H bonds. Dalton Trans. 2018, 47, 726-733.
13] Dou, M.-Y.; Zhong, D.-D.; Huang, X.-Q.; Yang, G.-Y. Imidazole-
induced self-assembly of polyoxovanadate cluster organic
framework for efficient knoevenagel condensation under mild
conditions. CrystEngComm 2020, 22, 4147-4153.
14] Martin-Caballero, J.; Wery, A.; Reinoso, S.; Artetxe, B.; Felices, L.;
Bakkali, B.; Trautwein, G.; Alcaniz-Monge, J.; Vilas, J.; Gutierrez-
Zorrilla, J. A robust open framework formed by decavanadate
clusters and copper(II) complexes of macrocyclic polyamines:
permanent microporosity and catalytic oxidation of cycloalkanes.
Inorg. Chem. 2016, 55, 4970-4979.
dimensional supramolecular chain based on [H
2
10
V O
28]4− units
decorated with 4-dimethylaminopyridinium ions: an
experimental and theoretical characterization. New J. Chem.
2019, 43, 17746-17755.
[23] Han, L.-W.; Lin, J.-X.; Yin, Q.; Karadeniz, B.; Li, H.-F.; Lü, J.; Cao, R.
Sandwich-type inorganic–organic hybrid solids of iso-
polyvanadate clusters and decamethylcucurbit[5]uril. Cryst.
Growth Des. 2016, 16, 1213-1217.
[24] Wan, R.; He, P.; Liu, Z.; Ma, X.; Ma, P.; Singh, V.; Zhang, C.; Niu, J.;
Wang, J. A lacunary polyoxovanadate precursor and transition-
metal-sandwiched derivatives for catalytic oxidation of sulfides.
Argentophilic interactions in multinuclear Ag complexes of imidazole
containing schiff bases. CrystEngComm 2012, 14, 3509-3514.
[26] Li, X.; Liu, A.; Du, X.-D.; Wang, F.-X.; Wang, C.-C. Three silver
coordination polymers constructed from 4,4-bipyridine-like
ligands and 2,5-thiophenedicarboxylic acid: crystal structures
and photocatalytic performances. Transition Met. Chem. 2019,
44, 311-319.
[27] Brown, I.; Altermatt, D. Bond-valence paremeters obtained from
a systymatic analysis of the inorganic crystal structure datebase.
Acta cryst. B 1985, 41, 244-247.
[28] Nakamura, S.; Ozeki, T. Guest Driven Rearrangements of
protonation and hydrogen bonding in decavanadate anions as
their tetraalkylammonium salts. Dalton Trans. 2008, 44, 6135-
6140.
[
[
[
15] Xu, W.; Jiang, F.; Zhou, Y.; Xiong, K.; Chen, L.; Yang, M.; Feng, R.;
Hong, M. Three novel organic–inorganic complexes based on
6
−
decavanadate [V10
frameworks and yellow/blue luminescences. Dalton Trans. 2012,
1, 7737-7745.
O
28
]
units: special water layers open 3D
4
16] Missina, J.; Leme, L.; Postal, K.; Santana, F.; Hughes, D.; Sá, E.,
Ribeiro, R.; Nunes, G. Accessing decavanadate chemistry with
tris(hydroxymethyl)aminomethane,
methylene blue bleaching. Polyhedron 2020, 180, 114414-
14426.
and
evaluation
of
1
17] (a) Zhao, W.; Yang, C.; Huang, J.; Jin, X.; Deng, Y.; Wang, L.; Su, F.;
Xie, H.; Wong, P.; Ye, L. Selective aerobic oxidation of sulfides to
sulfoxides in water under blue light irradiation over Bi
4
O
5
Br
2
.
[29] Ortaboy, S.; Acar, E.; Atun, G. The removal of radioactive
strontium ions from aqueous solutions by isotopic exchange
using strontium decavanadates and corresponding mixed oxides.
Chem. Eng. J. 2018, 344, 194-205.
[30] Cheng, M.-Q.; Ma, L.-F.; Wang, L.-Y. Synthesis, crystal structures
and properties of two novel Co(II) and Cd(II) complexes of N-
Green Chem. 2020, 22, 4884-4889; (b) He, X.; Chen, L.; He, Q.;
Xiao, H.; Zhou, X.; Ji, H. Cytochrome P450 enzyme-copper
phosphate hybrid nano-flowers with superior catalytic
performances for selective oxidation of sulfides. Chin. J. Chem.
2017, 35, 693-698 (c) Sheng, W.; Shi, J.-L.; Hao, H.; Li, X.; Lang, X.
Chin. J. Chem. 2021, 39, XXX-XXX
© 2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH
www.cjc.wiley-vch.de