H.-J. Xu et al. / Tetrahedron Letters 50 (2009) 434–437
437
He, H. Synlett 2003, 1789–1790; (g) Deng, W.; Liu, L.; Guo, Q.-X. Chin. J. Org.
Chem. 2004, 24, 150–165; (h) Deng, W.; Zou, Y.; Wang, Y. F.; Liu, L.; Guo, Q. X.
Synlett 2004, 1254–1258; (i) Bates, C. G.; Saejueng, P.; Doherty, M. Q.;
Venkataraman, D. Org. Lett. 2004, 6, 5005–5008; (j) Chen, Y. J.; Chen, H. H.
Org. Lett. 2006, 8, 5609–5612; (k) Zhu, D.; Xu, L.; Wu, F.; Wan, B. Tetrahedron
Lett. 2006, 47, 5781–5784; (l) Ranu, B. C.; Saha, A.; Jana, R. Adv. Synth. Catal.
2007, 349, 2690–2696; (m) Rout, L.; Sen, T. K.; Punniyamurty, T. Angew. Chem.,
Int. Ed. 2007, 46, 5583–5586; (n) Lv, X.; Bao, W. J. Org. Chem. 2007, 72, 3863–
3867; (o) Carril, M.; SanMartin, R.; Domínguez, E.; Tellitu, I. Chem. Eur. J. 2007,
13, 5100–5105; (p) Verma, A. K.; Singh, J.; Chaudhary, R. Tetrahedron Lett. 2007,
48, 7199–7202; (q) Rout, L.; Saha, P.; Jammi, S.; Punniyamurthy, T. Eur. J. Org.
Chem. 2008, 4, 640–643; (r) Sperotto, E.; van Klink, G. P. M.; de Vries, J. G.; van
Koten, G. J. Org. Chem. 2008, 73, 5625.
present study are consistent with the mechanism in which a four-
coordinated Cu(III) intermediate is involved (see Scheme 1).
According to the mechanism, the role of the ethyl 2-oxocyclohex-
anecarboxylate ligand in the reaction is either to promote the oxi-
dative addition of ArX to the Cu(I) species or to stabilize the Cu(III)
intermediate.
In conclusion, we have described an efficient modified protocol
for C–S cross-coupling of aryl, alkyl, and heteroaryl thiols with aryl
and heteroaryl iodides, bromides, and chlorides using cheap and
available Cu2O as the catalyst. This catalytic procedure offers gen-
eral applicability and simplicity, avoiding the use of expensive Cu
salts and the use of dry starting materials. Because of these inter-
esting features, we believe that the newly developed protocol
can be applied to large-scale synthesis of aromatic thioethers.
5. (a) Zhang, Y.; Ngeow, K. N.; Ying, J. Y. Org. Lett. 2007, 9, 3495–3499; (b) Jammi,
S.; Barua, P.; Rout, L.; Saha, P.; Punniyamurthy, T. Tetrahedron Lett. 2008, 49,
1484–1487.
6. Wong, Y. C.; Jayanth, T. T.; Cheng, C. H. Org. Lett. 2006, 8, 5613–5616.
7. Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 2880–2883.
8. Shen, G.; Lv, X.; Qian, W.; Bao, W. Tetrahedron Lett. 2008, 49, 4556–4559.
9. (a) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc. 1998, 120, 12459–
12467; (b) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc.
2001, 123, 7727–7729; (c) Ma, D.; Cai, Q. Org. Lett. 2003, 5, 3799–3802.
10. General experimental procedure. All reagents and solvents were pure
analytical grade materials purchased from commercial sources and were
used without further purification. The 1H and 13C NMR spectra were recorded
in CDCl3 on a 300 MHz instrument with TMS as internal standard. High-
resolution mass spectra (HRMS) were determined on a Micromass GCT-MS
mass spectrometer. TLC was carried out with 0.2 mm thick silica gel plates
(GF254). The columns were hand packed with silica gel 60 (200-300). All
reactions were carried out in a Schlenk tube equipped with a magnetic stir bar
under Ar atmosphere. A Schlenk tube was charged with Cu salt (0.05 mmol),
inorganic base (2 mmol), and solid substrate, if present. Then liquid reagents
(aryl or heteroaryl halide, 1 mmol; thiol, 1.1 mmol), ligand (0.1 mmol), and
solvent (1 ml) were added under Ar. The reaction vessel was closed and placed
under stirring in a preheated oil bath at 80 °C. The reaction mixture was stirred
for the time listed in Tables 1–3. The resulting suspension was cooled to room
temperature and filtered through a pad of filter paper with the help of 10 ml of
ethyl acetate. The filtrate was concentrated and the residue was purifiled by
silica gel chromatography.
Acknowledgments
This research was financially supported by the National Natural
Science Foundation of China (Nos. 20802015 and 20602034) and
the Doctoral Special Fund of Hefei University of Technology (No.
2007GDBJ021).
References and notes
1. (a) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046–2067; (b) Beletskaya, I.
P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337–2364; (c) Corbet, J. P.;
Mignani, G. Chem. Rev. 2006, 106, 2651–2710.
2. (a) Lindley, J. Tetrahedron 1984, 40, 1433–1456; (b) Sasaki, N. A.; Hashimoto, C.;
Potier, P. Tetrahedron Lett. 1987, 28, 6069–6072; (c) Van Bierbeek, A.; Gingras,
M. Tetrahedron Lett. 1998, 39, 6283–6286.
3. (a) Fernández-Rodríguez, M. A.; Shen, Q.; Hartwig, J. F. Chem. Eur. J. 2006, 12,
7782–7796; (b) Fernández-Rodríguez, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem.
Soc. 2006, 128, 2180–2181.
4. (a) Palomo, C.; Oiarbide, M.; Lopez, R.; Gomez-Bengoa, E. Tetrahedron Lett. 2000,
41, 1283–1286; (b) Herradura, P. S.; Pendola, K. A.; Guy, R. K. Org. Lett. 2000, 2,
2019–2022; (c) Yee Kwong, F.; Buchwald, S. L. Org. Lett. 2002, 4, 3517–3520; (d)
Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002, 4, 2803–2806; (e)
Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2002, 4, 4309–4312; (f) Wu, Y. J.;
(4-Methoxyphenyl) phenyl sulfane (entry 2, Table 2): 1H NMR (300 MHz,
CDCl3): d 3.78 (s, 3H), 6.98 (d, J = 8.7 Hz, 2H), 7.17-7.21(m, 5H), 7.40 (d, J = 9.0
Hz, 2H) ppm. 13C NMR (75 MHz, CDCl3): d 55.2, 115.0, 124.2, 125.7, 128.2,
128.9, 135.3, 138.6, 159.8 ppm. HRMS m/z: 216.0613 (216.0609 calcd for
C13H12OS).
11. Zhang, S. L.; Liu, L.; Fu, Y.; Guo, Q. X. Organometallics 2007, 26, 4546–4554.