Page 3 of 4
RSC Advances
DOI: 10.1039/C4RA12151A
presence of aromatic ring and steric hindrance.
reacts with CO2 to give HCOOH. Formic acid subsequently
reacts with amine in the dehydration step to give corresponding
15 formamides. It is also clear from the mechanism that high
pressure of CO2 is favourable to shift the equilibrium towards
forward direction.
In summary, we have developed an easily accessible, cost
effective copper (II) glycinato to be used as highly efficient,
20 recyclable and selective catalyst for the formylation of secondary
amines directly from the reaction of CO2 and H2 without using
any solvent.
Table 2 Cu(Gly)2 catalyzed formylation of amines
Entry
Substrate
Product
Yield
(%)
Select.
(%)
O
H
N
CH3
1.
91
95
96
98
H
N
H3C
CH3
CH3
O
H
C2H5
N
2.
3.
4.
H
N
Notes and references
C2H5
C2H5
H
C2H5
aChemical Sciences Division, CSIR-Indian Institute of Petroleum,
25 Mohkampur, Dehradun-248005, India. Fax: +91-135-2525788; Tel:
+91-135-2660202; E-mail: suman@iip.res.in
† Electronic Supplementary Information (ESI) available: [Experimental,
FTꢀIR, XRD, TGA and Proton NMR data of products]. See
DOI: 10.1039/b000000x/
H3C
N
O
41
95
85
97
H
N
CH3
30
35
40
45
50
55
1
(a) A. H. Liu, Y. N. Li, and L. N. He, Pure Appl. Chem., 2012, 84,
411ꢀ860; (b) M. Aresta, Carbon dioxide as chemical feedstock, John
Wiley & Sons, 2010; (b) T. Sakakura, J. C. Choi and H. Yasuda,
Chem. Rev., 2007, 107, 2365; (c) L. N. He, Z. Z. Yang, A. H. Liu, J.
Gao and Y. H. Hu, Advances in CO2 Conversion and Utilization,
2010, ACS Symposium Series No. 1056, pp. 77ꢀ101, ACS,
Washington, DC; (d) J. L. Wang, C. X. Miao, X. Y. Dou, J. Gao and
L. N. He, Curr. Org. Chem., 2011, 15, 621.
(a) K. Weissermel and H. J. Arpe, Industrial Organic Chemistry,
WileyꢀVCH, Weinheim, 2003, p. 43; (b) S. Ding, N. Jiao, Angew.
Chem. Int. Ed. 2012, 51, 9226ꢀ9237.
(a) Q. Y. Bi, J. D. Lin, Y. M. Liu, S. H. Xie, H. Y. He and Y. Cao,
Chem. Commun., 2014, 50, 9138ꢀ9140; (b) P. G. Jessop, Y. Hsiao, T.
Ikariya and R. Noyori, J. Am. Chem. Soc., 1994, 116, 8851ꢀ8852; (c)
L. Schmid, M. Rohr and A. Baiker, Chem. Commun., 1999, 2303ꢀ
2304; (d) P. Haynes, L. H. Slaugh and J. F. Kohnle, Tetrahedron
Lett., 1970, 11, 365ꢀ368.
(a) Xinjiang Cui, Yan Zhang, Youquan Deng and Feng Shi, Chem.
Commun., 2014, 50, 189ꢀ191.
(a) F. H. A. AlꢀJeboori and T. A. M. AlꢀShimiesawi, J. Chem. Pharm.
Res., 2013, 5(11), 318ꢀ321.
(a) C. Huo, J. Ouyang and H. Yang, Scientific reports, 2014, 4.
(a) W. Li, L. Lang, J. Dianzeng, C. Yali and X. Xinquan, Chinese
Science Bulletin, 2005, 50, 758ꢀ760.
(a) A. Milicevic and N. Raos, J. Appl. Cryst., 2010, 43, 42ꢀ47.
(a) J. Liu, C. Guo, Z. Zhang, T. Jiang, H. Liu, J. Song, H. Fan and B.
Han, Chem. Commun., 2010, 46, 5770ꢀ5772.
O
H
N
H
O
N
H
N
H
N
5.
6.
91
90
97
96
2
3
CH3
CH3
NH
O
H
N
O
H
N
4
5
H
N
7.
8.
81
92
91
N
H
N
H
6
7
O
O
O
8
9
95
H
N
N
H
O
a Reaction conditions: amine (5 mL); catalyst (0.1 g); molar ratio of
5
CO2/H2 =1.25; Total pressure of reaction 50 bar; 85 ⁰C; 4 h
Although, the exact mechanism of the reaction is not clear at this
stage, based on the existing literature reports,9 a plausible
mechanism for the reaction is shown in Scheme 2. In analogy to
10 the previous reports, we presumed that Cu activates the H2 which
H
H2
Cu
Cu
H
H
ꢀCO2
CO2
Cu
N
R1
R2
O
R1
N
C
R2
ꢀH2O
H
HCOOH
Scheme 2 Possible Reaction Mechanism
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3