108
S. V. Maifeld et al. / Tetrahedron Letters 46 (2005) 105–108
hara, T.; Motegi, R.; Nagai, Y. J. Organomet. Chem. 1977,
References and notes
139, 215; (e) Hill, J. E.; Nile, T. A. J. Organomet. Chem.
1977, 137, 293; (f) Ojima, I.; Kumafai, M.; Hagai, Y. J.
Organomet. Chem. 1977, 137, 293; (g) Ojima, I.; Kumagi,
M. J. Organomet. Chem. 1974, 66, C14.
1. For reviews, see: (a) Deiters, A.; Martin, S. F. Chem. Rev.
2004, 104, 2199; (b) Giessert, A. J.; Diver, S. T. Chem.
Rev. 2004, 104, 1317; (c) Poulsen, C. S.; Madsen, R.
Synthesis 2003, 1; (d) Mori, M. In Handbook of Metath-
esis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, Ger-
many, 2003; Vol. 2, pp 176–204; (e) Connon, S. J.;
Blechert, S. Angew. Chem., Int. Ed. 2003, 42, 1900; (f)
Shrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed.
2003, 42, 4592; (g) Furstner, A. Angew. Chem., Int. Ed.
2000, 39, 3013; (h) Grubbs, R. H.; Chang, S. Tetrahedron
1998, 54, 4413.
2. (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H.
Angew. Chem., Int. Ed. 1995, 34, 2039; (b) Wu, Z.; Nguyen,
S. T.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1995,
117, 5503; (c) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J.
Am. Chem. Soc. 1996, 118, 100; (d) Scholl, M.; Ding, S.;
Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953; (e) Lee,
C. W.; Grubbs, R. H. Org. Lett. 2000, 2, 2558.
10. (a) Martin, M.; Sola, E.; Torres, O.; Plou, P.; Oro, L. A.
Organometallics 2003, 22, 5406; (b) Jun, C.; Crabtree, R.
H. J. Organomet. Chem. 1993, 447, 177; (c) Tanke, R. S.;
Crabtree, R. H. J. Am. Chem. Soc. 1990, 112, 7984.
11. Na, Y.; Chang, S. Org. Lett. 2002, 4, 2825.
12. (a) Kawanami, Y.; Sonoda, Y.; Mori, T.; Yamamoto, K.
Org. Lett. 2002, 4, 2825; (b) Katayama, H.; Taniguchi, K.;
Kobayashi, M.; Sagawa, T.; Minami, T.; Ozawa, F. J.
Organomet. Chem. 2002, 645, 192; (c) Ball, Z. T.; Trost, B.
M. J. Am. Chem. Soc. 2001, 123, 12726.
13. (a) Itami, K.; Mitsudo, K.; Nishino, A.; Yoshida, J.-i. J.
Org. Chem. 2002, 67, 2645; (b) Matsumoto, H.; Hoshino,
Y.; Nagai, Y. Chem. Lett. 1982, 1663.
14. Grimm, J. B.; Lee, D. J. Org. Chem. 2004, published on
15. (a) Maifeld, S. V.; Miller, R. L.; Lee, D. J. Am. Chem. Soc.
2004, 126, 10242; (b) Miller, R. L.; Maifeld, S. V.; Lee, D.
Org. Lett. 2004, 6, 2773.
16. A competitive silylation experiment employing equimolar
amounts of 1-hexyne, 1-propanol, and dimethylsilane
revealed a 4.5:1 relative ratio of carbon–carbon triple
bond hydrosilylation over oxygen silylation.
17. Alcohol (2equiv) and silane (1equiv) were employed to
restrict the formation of minor amounts of silyl ether as
well as hydrosilylated silyl ether.
18. (a) Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L.
J. Am. Chem. Soc. 1999, 121, 2674; (b) Huang, J.; Schanz,
H.-J.; Stevens, E. D.; Nolan, S. P. Organometallics 1999,
18, 5375; (c) Furstner, A.; Thiel, O. R.; Ackermann, L.;
Schanz, H.-J.; Nolan, S. P. J. Org. Chem. 2000, 65, 2204;
(d) Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R.
H. Tetrahedron Lett. 1999, 40, 2247.
3. For examples of nonmetathesis behavior of Grubbs-type
carbenes, see: (a) Alcaide, B.; Almendros, P. Chem. Eur. J.
2003, 9, 1258, and references cited therein; (b) Mori, M.;
Saito, N.; Tanaka, D.; Takimoto, M.; Sato, Y. J. Am.
Chem. Soc. 2003, 125, 5606; (c) Quayle, P.; Fengas, D.;
Richards, S. Synlett 2003, 1797; (d) Schmidt, B. Angew.
Chem., Int. Ed. 2003, 42, 4996; (e) Kitamura, T.; Sato, Y.;
Mori, M. Chem. Commun. 2001, 1258.
4. Lopez, F.; Delgado, A.; Rodriguez, J. R.; Castedo, L.;
Mascarenas, J. L. J. Am. Chem. Soc. 2004, 126, 10262.
5. Maifeld, S. V.; Miller, R. L.; Lee, D. Tetrahedron Lett.
2002, 43, 6363.
6. (a) Ojima, I.; Li, Z.; Zhu, J. In The Chemistry of
Organosilicon Compounds; Rappoport, S., Apeloig, Y.,
Eds.; Wiley: New York, 1998; (b) Langkopf, E.; Schinzer,
D. Chem. Rev. 1995, 95, 135; (c) Hiyama, T.; Kusumoto,
T. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 8, p 763;
(d) Ojima, I. In The Chemistry of Organic Silicon
Compounds; Patai, S., Rappoport, Z., Eds.; John Wiley:
Chichester, 1989; p 1479.
19. (a) Dorta, R.; Kelly, R. A., III; Nolan, S. P. Adv. Synth.
Catal. 2004, 346, 917; (b) Jafarpour, L.; Schanz, H.-J.;
Stevens, E. D.; Nolan, S. P. Organometallics 1999, 18,
5416.
20. Melis, K.; De Vos, D.; Jacobs, P.; Verpoort, F. J.
Organomet. Chem. 2002, 659, 159.
7. (a) Marciniec, B. Comprehensive Handbook on Hydrosily-
lation; Pergamon: Oxford, 1992; (b) Fleming, I.;
Dungogues, J.; Smithers, R. H. Org. React. 1989, 37,
57.
8. (a) Sato, A.; Kinoshita, H.; Shinokubo, H.; Oshima, K.
Org. Lett. 2004, 6, 2217; (b) Faller, J. W.; DÕAlliessi, D. G.
Organometallics 2002, 21, 1743; (c) Takeuchi, R.; Ebata, I.
Organometallics 1997, 16, 3707; (d) Takeuchi, R.; Nitta,
S.; Watanabe, D. J. Org. Chem. 1995, 60, 3045.
9. (a) Field, L. D.; Ward, A. J. J. Organomet. Chem. 2003,
681, 91; (b) Doyle, M. P.; High, K. G.; Nesloney, C. L.;
Clayton, T. W., Jr.; Lin, J. Organometallics 1991, 10, 1225;
(c) Ojima, I.; Clos, N.; Donovan, R. J.; Ingallina, P.
Organometallics 1990, 9, 3127; (d) Watanabe, H.; Kita-
21. For Z-stereoselective intramolecular hydrosilylation fol-
lowed by silicon-assisted cross-coupling reactions, see:
Denmark, S. E.; Pan, W. Org. Lett. 2002, 4, 4163.
22. For E-stereoselective intramolecular hydrosilylation fol-
lowed by silicon-assisted cross-coupling reactions, see:
Denmark, S.; Pan, W. Org. Lett. 2001, 3, 361.
23. 1H NMR experiments employing a variety of silanes at
various temperatures in the absence of alkyne have been
attempted to identify this metal hydride intermediate;
however, the observation of this complex has been
precluded by the formation of silyl byproducts, presum-
ably arising from silyl condensation.