Page 5 of 6
New Journal of Chemistry
Please do not adjust margins
Journal Name
compound P4: CDCl3 (State I), CD3OD (State II) and DMSO (State 5.
COMMUNICATION
1
2
3
4
5
6
7
8
P. J. Cragg, Isr. J. Chem., 2018, 58, 1194-1208.
III)).
6.
7.
8.
9.
J. Sun, B. Hua, Q. Li, J. Zhou and JD. OYaI:n1g0,.1O03rg9/.DL0eNttJ.0, 12805198G,
20, 365-368.
F. Zhang, J. Ma, Y. Sun, Y. Mei, X. Chen, W. Wang and H. Li,
Anal. Chem., 2018, 90, 8270-8275.
T. Ogoshi, T. Furuta, Y. Hamada, T. Kakuta and T. Yamagishi,
Materials Chemistry Frontiers, 2018, 2, 597-602.
X. Q. Wang, W. Wang, W. J. Li, L. J. Chen, R. Yao, G. Q. Yin,
Y. X. Wang, Y. Zhang, J. Huang, H. Tan, Y. Yu, X. Li, L. Xu and
H. B. Yang, Nature communications, 2018, 9, 3190.
Y. Wang, Y. Tian, Y. Z. Chen, L. Y. Niu, L. Z. Wu, C. H. Tung,
Q. Z. Yang and R. Boulatov, Chem Commun (Camb), 2018.
J.-C. Chang, S.-H. Tseng, C.-C. Lai, Y.-H. Liu, S.-M. Peng and
S.-H. Chiu, Nature Chemistry, 2016, 9, 128-134.
R. DaꢀSilvaꢀRodrigues and K. M. Mullen, ChemPlusChem,
2017, 82, 814-825.
J. F. Stoddart, Angew. Chem. Int. Ed. Engl., 2017, 56, 11094-
11125.
M. Cheng, Q. Wang, Y. Cao, Y. Pan, Z. Yang, J. Jiang and L.
Wang, Tetrahedron Lett., 2016, 57, 4133-4137.
C. J. Bruns and J. F. Stoddart, Acc. Chem. Res., 2014, 47,
2186-2199.
A. Goujon, T. Lang, G. Mariani, E. Moulin, G. Fuks, J. Raya,
E. Buhler and N. Giuseppone, J. Am. Chem. Soc., 2017, 139,
14825-14828.
K. Yang, S. Chao, F. Zhang, Y. Pei and Z. Pei, Chem.
Commun., 2019, 55, 13198-13210.
K. Kitajima, T. Ogoshi and T. A. Yamagishi, Chem Commun
(Camb), 2014, 50, 2925-2927.
S. Mena-Hernando and E. M. Pérez, Chem. Soc. Rev., 2019,
48, 5016-5032.
D. A. Leigh, L. Pirvu and F. Schaufelberger, J. Am. Chem.
Soc., 2019, 141, 6054-6059.
J. Zhong, L. Zhang, D. P. August, G. F. S. Whitehead and D.
A. Leigh, J. Am. Chem. Soc., 2019, 141, 14249-14256.
W. Yang, Y. Li, H. Liu, L. Chi and Y. Li, Small, 2012, 8, 504-
516.
Q. Hao, Y. Chen, Z. Huang, J. F. Xu, Z. Sun and X. Zhang, ACS
applied materials & interfaces, 2018, 10, 5365-5372.
S. Guo, Y. Song, Y. He, X. Y. Hu and L. Wang, Angew. Chem.
Int. Ed. Engl., 2018, 57, 3163-3167.
C.-W. Chiu, C.-C. Lai and S.-H. Chiu, J. Am. Chem. Soc., 2007,
129, 3500-3501.
S. Chen, Y. Wang, T. Nie, C. Bao, C. Wang, T. Xu, Q. Lin, D.-
H. Qu, X. Gong, Y. Yang, L. Zhu and H. Tian, J. Am. Chem.
Soc., 2018, 140, 17992-17998.
G. De Bo, M. A. Y. Gall, S. Kuschel, J. De Winter, P. Gerbaux
and D. A. Leigh, Nature Nanotechnology, 2018, 13, 381-
385.
M. Kimura, T. Mizuno, M. Ueda, S. Miyagawa, T. Kawasaki
and Y. Tokunaga, Chemistry, an Asian journal, 2017, 12,
1381-1390.
H. Tian, C. Wang, P.-H. Lin and K. Meguellati, Tetrahedron
Lett., 2018, 59, 3416-3422.
700
600
500
400
300
200
100
0
CH2Cl2
9
THF
CHCl3
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
CH3CN
DMF
CH3OH
10.
11.
12.
13.
14.
15.
16.
DMSO
500
550
600
650
700
Wavelength (nm)
Fig. 8 Fluorescence spectroscopy of compound P4 in different
solvents.
As triphenylamine is a fluorescent molecule with aggregation
induced enhanced emission effect, we performed fluorescent
spectroscopy studies of compound P4 by dissolving it in
different solvents (CH2Cl2, THF, CHCl3, CH3CN, DMF, CH3OH,
DMSO). From Fig. 8, we can see that the emission peak of
triphenylamine derivate is around 550 nm and the fluorescent
intensity decreased with the increase of polarity of solvent; it
can be noticed that the host-guest interactions were enhanced
in CDCl3 coupled with a reduction of intramolecular vibrations
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
leading to
a fluorescent enhancement. The host-guest
interactions which were weakened by the increase of the
polarity of solvent and intramolecular vibrations led to the
decrease of the fluorescence intensity. These results suggested
that this molecular machine is responsive to the polarity of
solvents.
Conclusions
In summary, we synthesized a new pillar[5]arene-based
molecular machine. This molecular machine can undergo into
different self-interlocked structures in CDCl3 and CD3OD, and in
an extended form in DMSO. This new [1]rotaxane solvent-
responsive molecular machine was made with a new synthetic
route. This machine will be useful for the construction of new
stimuli responsive smart materials with applications in biology
and material science.
27.
28.
29.
30.
B. Y. Xia, B. Zheng, C. Y. Han, S. Y. Dong, M. M. Zhang, B. J.
Hu, Y. H. Yu and F. H. Huang, Polymer Chemistry, 2013, 4,
2019-2024.
T. Ogoshi, T. A. Yamagishi and Y. Nakamoto, Chem. Rev.,
2016, 116, 7937-8002.
N. L. Strutt, R. S. Forgan, J. M. Spruell, Y. Y. Botros and J. F.
Stoddart, J. Am. Chem. Soc., 2011, 133, 5668-5671.
Notes and references
1.
2.
J.-M. Lehn, Science, 1993, 260, 1762-1764.
B. Zheng, F. Wang, S. Dong and F. Huang, Chem. Soc. Rev.,
2012, 41, 1621-1636.
A. Harada, Acc. Chem. Res., 2001, 34, 456-464.
T. Pierro, C. Gaeta, C. Talotta, A. Casapullo and P. Neri, Org.
Lett., 2011, 13, 2650-2653.
31.
32.
3.
4.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins