G. Haufe, A. Burchardt
FULL PAPER
3
1H NMR: δ ϭ 1.53 (d, JH,F ϭ 21.5 Hz, 3 H, 4-H) 2.08 (br. s, 1 zymes, respectively, and Dr. D. Herrmann, Heidelberg Pharma
2
3
H, OH) 3.75Ϫ3.96 (2dd, JHa,Hb ϭ 12.4 Hz, JHb,F ϭ 16.0 Hz,
Holding, GmbH & Co KG, Germany, for biological tests.
3JHa,F ϭ 25.3 Hz, 2 H, 3-H), 3.83 (s, 3 H, 5-H). 13C NMR: δ ϭ
2
2
19.7 (dq, JC,F ϭ 22.9 Hz, 4-C), 52.8 (q, 5-C), 66.8 (dt, JC,F
ϭ
ϭ
22.9 Hz, 3-C), 95.5 (ds,1JC,F ϭ 185.60 Hz, 2-C), 171.1 (ds, JC,F
2
[1]
J. Benveniste, P. M. Henson, C. G. Cochrane, J. Exp. Med.
25.4 Hz, 1-C). 19F NMR: δ ϭ Ϫ165.0 (m). GC/MS: m/z (%) ϭ 136
(0.2) [Mϩ·], 135 (0.1) [Mϩ· Ϫ 1], 116 (4) [Mϩ· Ϫ HF], 106 (100)
[Mϩ· Ϫ CH2O], 105 (5) [135 Ϫ CH2O], 77 (36) [Mϩ· Ϫ C2H3O2],
74 (57) [C3H6O2ϩ], 59 (23) [C3H4Fϩ; C2H3O2ϩ]. GC/MS (CI):
m/z ϭ 154 [M ϩ NH4ϩ]. C5H9FO3 (136.1): calcd. C 44.12, H 6.66;
found C 43.82, H 6.87. By the same procedure, (R)-20 (40 mg,
0.24 mmol) was transformed into (R)-21. Yield: 20 mg (61%). The
enantiomeric excess of this compound was determined by Mosher’s
method:[31] DCC (23 mg, 110 µmol) and DMAP (a few crystals)
were added to a solution of (R)-21 (5 mg, 37 µmol) and (R)-(ϩ)-
Mosher’s acid (26 mg, 110 µmol) in CH2Cl2 (1 mL). The resulting
mixture was stirred at room temperature for 14 h, and the solid
material was filtered off and washed with 1 mL of CH2Cl2. The
organic layers were combined and the solvent was removed. The
proton-decoupled 19F NMR spectrum of the crude residue (re-
duced measuring range δ ϭ Ϫ150 to Ϫ180) showed two baseline-
separated signals for the CF groups at δ ϭ Ϫ162.1 and δ ϭ Ϫ162.2.
The integration showed a ratio of 75:25, hence 50% ee [the small
difference in the ee values of (S)-19 and (R)-21 is probably due to
the different methods, GC or 19F NMR, respectively, used for the
determination]. The signals of the CF3 groups at δ ϭ Ϫ72.44 and
δ ϭ Ϫ72.49 were not baseline-separated and could not be used for
the determination of the ee.
1972, 136, 1356Ϫ1375.
[2]
D. J. Hanahan, C. A. Demopoulos, L. Liehr, R. N. Pinckard,
J. Biol. Chem. 1980, 255, 5514Ϫ5516.
[3] [3a]
H. K. Mangold, Angew. Chem. 1979, 91, 550Ϫ560; Angew.
[3b]
Chem. Int. Ed. Eng. 1979, 18, 493Ϫ502.
N. Weber, Lipids 1987, 22, 789Ϫ799.
H. K. Mangold,
[4]
[5]
C. A. Demopoulos, R. N. Pinckard, D. J. Hanahan, J. Biol.
Chem. 1979, 254, 9355Ϫ9358.
[5a] H. K. Mangold, Prog. Biochem. Pharmacol. 1988, 22, 1Ϫ16.
[5b]
R. K. Erukulla, H.-S. Byun, R. Bittman, J. Org. Chem.
1995, 60, 7706Ϫ7708.
[6] [6a]
M. H. Runge, R. Andreesen, A. Pfleiderer, P. G. Munder,
[6b]
J. Natl. Cancer Inst. 1980, 64, 1301Ϫ1306.
E. A. M: Fleer,
D.-J. Kim, G. A. Nagel, H. Eibl, C. Unger, Onkologie 1990,
13, 295Ϫ300.
[7]
[8]
F. Snyder, Med. Res. Rev. 1985, 5, 107Ϫ140.
P. G. Munder, H. Fischer, H. U. Weltzein, Proc. Am. Assoc.
Cancer Res. 1976, 17, 174Ϫ178.
[9]
W. J. Houlihan, M. Lohmeyer, P. Workman, S. H. Cheon, Med.
Res. Rev. 1995, 15, 157Ϫ223.
[10] [10a]
K. C. Reddy, H.-S. Byun, R. Bittman, Tetrahedron Lett.
[10b]
1994, 35, 2679Ϫ2682.
R. Bittman, H.-S. Byun, K. C.
Reddy, P. Samadder, G. Arthur, J. Med. Chem. 1997, 40,
1391Ϫ1395.
[11]
[12]
[13]
[14]
[15]
A. Burchardt, T. Takahashi, Y. Takeuchi, G. Haufe, J. Org.
Chem. 2001, 66, 2078Ϫ2084.
W. E. Berdel, W. R. E. Bausert, U. Fink, J. Raststetter, P. G.
Munder, Anticancer Res. 1981, 1, 345Ϫ352.
I. Kudo, S. Nojima, H. W. Chang, R. Yanoshita, H. Hayashi,
E. Kondo, H. Nomura, K. Inoue, Lipids 1987, 22, 862Ϫ867.
P. Workman, J. Donaldson, M. Lohmeyer, Biochem. Pharma-
col. 1991, 41, 319Ϫ322.
3-Bromo-2-fluoro-2-methylpropanoic Acid (23): According to the
procedure given above for the synthesis of 20, the bromo-substi-
tuted fluoride 18 (2.60 g, 12 mmol) was oxidized (reaction time
6 d) to 23, and isolated as a hygroscopic white solid. Yield: 1.56 g
(70%). 1H NMR: δ ϭ 1.75 (d, 3JH,F ϭ 20.5 Hz, 3 H, 4-H) 3.62 (dd,
3JHb,F ϭ 14.5 Hz, 2JHa,Hb ϭ 11.5 Hz, 1 H, 3-Hb), 3.76 (dd, 3JHa,F ϭ
W. J. Houlihan, M. Lee, P. G. Munder, G. M. Nemecek, D. A.
Handley, Ch. M. Winslow, J. Happy, Ch. Jaeggi, Lipids 1987,
22, 884Ϫ890.
2
23.8 Hz, JHa,Hb ϭ 11.5 Hz, 1 H, 3-Ha), 7.74 (br, 1 H, OH). 13C
2
NMR (360 MHz): δ ϭ 22.5 (dq, JC,F ϭ 25.0 Hz, 4-C), 34.6 (dt,
1
2JC,F ϭ 25.0 Hz, 3-C), 92.8 (ds, JC,F ϭ 191.4 Hz, 2-C), 173.6 (ds,
[16] [16a]
R. Bittman, N. M. Witzke, T.-C. Lee, M. L. Blank, F.
[16b]
2JC,F ϭ 26.4 Hz, 1-C). 19F NMR: δ ϭ Ϫ155.6 (m). GC/MS [of the
Si(CH3)3 ester]: m/z (%) ϭ 212/214 (2/2) [Mϩ· Ϫ CO2], 136/138 (4/
4), 116/118 (1/1) [136/138 Ϫ HF], 93/95 (3/3) [CH2Brϩ], 85 (5), 77
(78), 73 (100) [Si(CH3)3ϩ], 59 (15) [C3H4Fϩ]. GC/MS [CI, of the
Si(CH3)3 ester]: m/z ϭ 274/276 [M ϩ NH4ϩ].
Snyder, J. Lipid Res. 1987, 28, 733Ϫ738.
H.-P. Kertscher,
G. Ostermann, A. Lang, W. Weissflog, K. Gawrisch, Pharmazie
1985, 40, 702Ϫ704.
[17] [17a]
Organofluorine Compounds in Medicinal Chemistry and
Biomedical Applications (Eds.: R. Filler, Y. Kobayashi, L. M.
Yagupolski), Elsevier, Amsterdam, 1993.
Chemistry: Principles and Commercial Applications (Eds.: R. E.
[17b]
Organofluorine
Methyl 3-Bromo-2-fluoro-2-methylpropanoate (24): A solution of 23
(1.52 g, 8.2 mmol) in dry methanol (30 mL) was treated with 2,2-
dimethoxypropane (300 µL) and one drop of conc. HCl and stirred
at room temperature for 32 h. After workup by the procedure given
above for compound 21, the ester 24 was isolated as a yellow oil.
Yield: 850 mg (48%). The 1H NMR spectroscopic data of this com-
pound agree with those published.[41] 13C NMR: δ ϭ 22.4 (dq,
Banks, B. E. Smart, J. C. Tatlow), Plenum Press, New York,
[17c]
1994.
Biomedical Frontiers of Fluorine Chemistry (Eds.: I.
Ojima, J. R. McCarthy, J. T. Welch), ACS Symposium Series
[17d]
639, American Chemical Society, Washington, 1996.
D.
[17e]
O’Hagan, H. S. Rzepa, Chem. Commun. 1997, 645Ϫ652.
R. E. Banks, J. Fluorine Chem. 1998, 87, 1Ϫ17. [17f] Asymmetric
Fluoroorganic Chemistry. Synthesis, Applications, and Future
Directions (Ed.: P. V. Ramachandran), ACS Symposium Series
746, American Chemical Society, Washington, 2000.
2
2JC,F ϭ 22.9 Hz, 4-C), 35.1 (dt, JC,F ϭ 22.9 Hz, 3-C), 52.9 (q, 5-
1
2
C), 93.0 (ds, JC,F ϭ 190.7 Hz, 2-C), 169.7 (ds, JC,F ϭ 22.9 Hz, 1-
[18] [18a] A. Guidi, F. Canfarini, A. Giolitti, F. Pasqui, F. Arcamone,
C). 19F NMR: δ ϭ Ϫ155.4 (m). GC/MS: m/z (%) ϭ 198/200 (6/6)
[18b]
Pure Appl. Chem. 1994, 66, 2319Ϫ2322.
M. Schlosser, An-
[Mϩ·], 178/180 (19/19) [Mϩ· Ϫ HF], 139/141 (11/11) [Mϩ·
Ϫ
gew. Chem. 1998, 110, 1538Ϫ1556; Angew. Chem. Int. Ed. Engl.
C2H3O2], 119 (11) [Mϩ· Ϫ Br], 99 (21) [178/180 Ϫ Br], 77 (38), 71
1998, 37, 1496Ϫ1513.
(11), 60 (22), 59 (100) [C3H4Fϩ; C2H3O2ϩ].
[19] [19a]
A. W. Baker, A. T. Shullgin, Nature 1965, 206, 712Ϫ713.
[19b]
M. C. Chapeau, P. A. Frey, J. Org. Chem. 1994, 59,
[19c]
6994Ϫ6998.
J. A. K. Howard, V. J. Hoy, D. O’Hagan, G.
[19d]
T. Smith, Tetrahedron 1996, 52, 12613Ϫ12622.
T. Yama-
Acknowledgments
zaki, T. Kitazume, Coordination Ability of Fluorine to Proton
or Metals Based on Experimental and Theoretical Evidence, in:
Enantiocontrolled Synthesis of Fluoro-Organic Compounds (Ed.:
V. A. Soloshonok), John Wiley & Sons, Chichester, 1999, pp.
575Ϫ600.
This work was generously supported by the Deutsche Forschungs-
gemeinschaft and the Fonds der Chemischen Industrie. We wish to
thank the Bayer AG, Leverkusen, and the Amano Pharmaceutical
Co., Ltd., Nagoya, Japan, for kind donations of chemicals and en-
4506
Eur. J. Org. Chem. 2001, 4501Ϫ4507