Journal of the American Chemical Society
AUTHOR INFORMATION
COMMUNICATION
’
and Ecology; Bonchev, D., Rouvray, D. H., Eds.; Springer: New York,
2
005.
11) (a) Curtin, D. Y. Rec. Chem. Prog. 1954, 15, 111. (b) Seeman,
J. I. Chem. Rev. 1983, 83, 83. (c) Seeman, J. I. J. Chem. Educ. 1986, 63, 42.
12) See, for example: (a) Li, Y.; Wang, Y.-L.; Wang, J.-Y. Chem. Lett.
Corresponding Author
(
(
2
006, 35, 460. (b) Ponnala, S.; Sahu, D. P. Synth. Commun. 2006, 36,
’
ACKNOWLEDGMENT
2189.
(
13) In fact, a fast irreversible reaction is often used to “trap” an
We thank Ms. Jovana Mili ꢁc for insightful discussions. This
equilibrating mixture before analysis without disturbing the component
ratios.
(
NMR spectrum in Scheme 5. Amine 3 is capable of forming double
imines with either of the aldehydes, and some imines exist in their closed
benzimidazoline and benzoxazoline forms (not shown).
research was financially supported by the donors of the American
Chemical Society Petroleum Research Fund (ACS-PRF), the
University of Houston (UH) and its Grant to Advance and
Enhance Research, the Texas Center for Superconductivity at
UH, and the Institute for Space Systems Operations. K.O.
acknowledges Drs. Joan and Herman Suit for the Eby Nell
McElrath Postdoctoral Fellowship.
1
14) The situation is slightly more complex than suggested by the H
(15) The opposing influences of imine stability (which favors
donor-acceptor combinations of constituent amines and aldehydes)
and rate of oxidation (which favors donor-donor combinations)
suggest that the outcome of oxidation should depend on the rate of
addition of I . Indeed, when I was added very slowly (over 120 h), the
’
REFERENCES
2
2
(
1) Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory
Chemicals; Elsevier: Amsterdam, 2003.
2) Green, T. W.; Wuts, P. G. Protective Groups in Organic Synthesis;
Wiley: Hoboken, NJ, 2007.
3) Shenvi, R. A.; O'Malley, D. P.; Baran, P. S. Acc. Chem. Res. 2009,
2, 530.
29/28 ratio shifted to 17:83. On the other hand, when addition of I was
instantaneous, the 29/28 ratio was 76:24. Details of these and related
investigations will be reported elsewhere.
2
(
(
4
(4) (a) Mukhopadhyay, P.; Wu, A.; Isaacs, L. J. Org. Chem. 2004, 69,
6157. (b) Wu, A.; Isaacs, L. J. Am. Chem. Soc. 2003, 125, 4831. (c) Jiang, W.;
Sch €a fer, A.; Mohr, P. C.; Schalley, C. A. J. Am. Chem. Soc. 2010, 132,
309. (d) Rudzevich, Y.; Rudzevich, V.; Klautzsch, F.; Schalley, C. A.;
2
B €o hmer, V. Angew. Chem., Int. Ed. 2009, 48, 3867. (e) Northrop, B. H.;
Zheng, Y.-R.; Chi, K.-W.; Stang, P. J. Acc. Chem. Res. 2009, 42, 1554. (f)
Northrop, B. H.; Yang, H.-B.; Stang, P. J. Inorg. Chem. 2008, 47, 11257.
(
5) (a) Lehn, J.-M. Science 2000, 295, 2400. (b) Whitesides, G. M.;
Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.
6) (a) Ghosh, S.; Wu, A.; Fettinger, J. C.; Zavalij, P. Y.; Isaacs, L. J.
(
Org. Chem. 2008, 73, 5915. (b) Liu, S.; Ruspic, C.; Mukhopadhyay, P.;
Chakrabarti, S.; Zavalij, P.; Isaacs, L. J. Am. Chem. Soc. 2005, 127, 15959.
(c) Jiang, W.; Schalley, C. A. Proc. Natl. Acad. Sci. U.S.A. 2009, 106,
10425. (d) Ajami, D.; Hou, J.-L.; Dale, T. J.; Barrett, E.; Rebek, J., Jr. Proc.
Natl. Acad. Sci. U.S.A. 2009, 106, 10430. (e) Barrett, E. S.; Dale, T. J.;
Rebek, J., Jr. J. Am. Chem. Soc. 2008, 130, 2344. (f) Tomimasu, N.;
Kanaya, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. J. Am. Chem. Soc.
2
009, 131, 12339. (g) Masson, E.; Lu, X.; Ling, X.; Patchell, D. L. Org.
Lett. 2009, 11, 3798. (h) Prins, L. J.; Jong, F. D.; Timmerman, P.;
Reinhoudt, D. N. Nature 2000, 408, 181. (i) Mukhopadhyay, P.;
Zavalij, P. Y.; Isaacs, L. J. Am. Chem. Soc. 2006, 128, 14093.
(7) (a) Campbell, E. V.; Hatten, X.; Delsuc, N.; Kauffmann, B.; Huc, I.;
Nitschke, J. R. Nat. Chem. 2010, 2, 684. (b) Schultz, D.; Nitschke, J. R. J.
Am. Chem. Soc. 2008, 128, 9887. (c) Sarma, R. J.; Nitschke, J. R. Angew.
Chem., Int. Ed. 2008, 47, 377. (d) Hutin, M.; Cramer, C. J.; Gagliardi, L.;
Shahi, A. R. M.; Bernardinelli, G.; Cerny, R.; Nitschke, J. R. J. Am. Chem.
Soc. 2007, 129, 8774. (e) Nitschke, J. R. Acc. Chem. Res. 2007, 40, 103
and references therein. (f) Mahata, K.; Schmittel, M. J. Am. Chem. Soc.
2
009, 131, 16544. (g) Parimal, K.; Witlicki, E. H.; Flood, A. H. Angew.
Chem., Int. Ed. 2010, 49, 4628. (h) Hiraoka, S.; Sakata, Y.; Shionoya, M.
J. Am. Chem. Soc. 2008, 130, 10058.
(8) For reviews of dynamic covalent chemistry, see: (a) Reek, J. N. H.;
Otto, S. Dynamic Combinatorial Chemistry; Wiley-VCH: Weinheim,
Germany, 2010. (b) Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.;
Wietor, J.-L.; Sanders, J. K. M.; Otto, S. Chem. Rev. 2006, 106, 3652. (c)
Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart,
J. F. Angew. Chem., Int. Ed. 2002, 41, 898.
(
9) For reviews, see: (a) Vidonne, A.; Philp, D. Eur. J. Org. Chem.
009, 593 and references therein. (b) Patzke, V.; von Kiedrowski, G.
ARKIVOC 2007, No. 5, 293 and references therein.
10) (a) Epstein, I. R.; Pojman, J. A. An Introduction to Nonlinear
2
(
Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos; Oxford
University Press: New York, 1998. (b) Complexity in Chemistry, Biology
7
27
dx.doi.org/10.1021/ja109754t |J. Am. Chem. Soc. 2011, 133, 724–727