Beilstein J. Org. Chem. 2020, 16, 15–21.
7. Pietrusiewicz, M. K.; Kuźnikowski, M.; Koprowski, M.
diation for this transformation. Eighteen new compounds were
obtained using the developed method. The advantages of the
proposed method include operational simplicity, high diastereo-
selectivity, the wide substrate scope and its applicability to
smaller (0.11 mmol) and larger scales (1.1 mmol).
Tetrahedron: Asymmetry 1993, 4, 2143–2146.
8. Błażewska, K. M.; Ni, F.; Haiges, R.; Kashemirov, B. A.; Coxon, F. P.;
Stewart, C. A.; Baron, R.; Rogers, M. J.; Seabra, M. C.; Ebetino, F. H.;
McKenna, C. E. Eur. J. Med. Chem. 2011, 46, 4820–4826.
9. Ebetino, F. H.; Hogan, A.-M. L.; Sun, S.; Tsoumpra, M. K.; Duan, X.;
Triffitt, J. T.; Kwaasi, A. A.; Dunford, J. E.; Barnett, B. L.;
Oppermann, U.; Lundy, M. W.; Boyde, A.; Kashemirov, B. A.;
McKenna, C. E.; Russell, R. G. G. Bone 2011, 49, 20–33.
10.Kaźmierczak, A.; Kusy, D.; Niinivehmas, S. P.; Gmach, J.;
Joachimiak, Ł.; Pentikäinen, O. T.; Gendaszewska-Darmach, E.;
Błażewska, K. M. J. Med. Chem. 2017, 60, 8781–8800.
11.Joachimiak, Ł.; Marchwicka, A.; Gendaszewska-Darmach, E.;
Błażewska, K. M. ChemMedChem 2018, 13, 842–851.
12.Kusy, D.; Maniukiewicz, W.; Błażewska, K. M. Tetrahedron Lett. 2019,
Supporting Information
Supporting Information File 1
Full experimental details, including copies of spectra (1H
NMR, 13C NMR, 31P NMR) of all new compounds. The
experimental details and NMR description of the starting
compounds synthesized according to our previously
published procedure.
13.Noël, T.; Buchwald, S. L. Chem. Soc. Rev. 2011, 40, 5010–5029.
Acknowledgements
We thank Mr. Jacek Reus for technical assistance in prelimi-
nary studies. We thank Dr. Marek Domin (Boston College) for
HRMS of the esters 3, 6–22. We thank Prof. Tadeusz Gajda
(Lodz University of Technology, Poland) and Dr. Łukasz
Joachimiak (OncoArendi Therapeutics, Poland) for reading the
manuscript and for helpful suggestions. We thank Dr.
Agnieszka Dybała-Defratyka (Lodz University of Technology,
Poland) for helpful discussions on computational aspects of this
reaction.
14.Monguchi, Y.; Ichikawa, T.; Yamada, T.; Sawama, Y.; Sajiki, H.
16.Cini, E.; Petricci, E.; Taddei, M. Catalysts 2017, 7, No. 89.
17.Błażewska, K.; Gajda, T. Tetrahedron 2004, 60, 11701–11707.
18.Viciu, M. S.; Grasa, G. A.; Nolan, S. P. Organometallics 2001, 20,
19.Wen, Q.; Jin, J.; Hu, B.; Lu, P.; Wang, Y. RSC Adv. 2012, 2,
20.Kou, X.; Zhao, M.; Qiao, X.; Zhu, Y.; Tong, X.; Shen, Z.
21.Kurandina, D.; Chuentragool, P.; Gevorgyan, V. Synthesis 2019, 51,
Funding
This work was financially supported by the National Science
Centre, Poland (2014/14/E/ST5/00491).
22.Colbon, P.; Ruan, J.; Purdie, M.; Mulholland, K.; Xiao, J. Org. Lett.
23.Melpolder, J. B.; Heck, R. F. J. Org. Chem. 1976, 41, 265–272.
ORCID® iDs
24.We excluded from our studies analog halogenated in position C5, as it
could not be obtained via the existing methods [10].
25.A trace amount of the appropriate product was isolated when higher
temperature was applied (150 °C). It was accompanied by products of
decomposition.
26.Whitcombe, N. J.; Hii, K. K.; Gibson, S. E. Tetrahedron 2001, 57,
27.Veerakumar, P.; Thanasekaran, P.; Lu, K.-L.; Lin, K.-C.; Rajagopal, S.
ACS Sustainable Chem. Eng. 2017, 5, 8475–8490.
References
1. Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066.
2. Yu, Y.; Su, Z.; Cao, H. Chem. Rec. 2019, 19, 2105–2118.
3. Koubachi, J.; El Kazzouli, S.; Bousmina, M.; Guillaumet, G.
4. Frantz, R.; Granier, M.; Durand, J.-O.; Lanneau, G. F.
Tetrahedron Lett. 2002, 43, 9115–9117.
5. Mincheva, Z.; Courtois, M.; Andreu, F.; Rideau, M.;
Viaud-Massuard, M.-C. Phytochemistry 2005, 66, 1797–1803.
6. Zheng, M.; Zhang, D. T.; Sun, M. X.; Li, Y. P.; Liu, T. L.; Xue, S. F.;
Yang, W. J. J. Mater. Chem. C 2014, 2, 1913–1920.
20