Z. Gao et al. / Journal of Molecular Catalysis A: Chemical 336 (2011) 51–57
57
[4] F. Bellina, A. Carpita, R. Rossi, Synthesis (2004) 2419–2440.
[5] S. Kotha, K. Lahiri, D. Kashinath, Tetrahedron 58 (2002) 9633–9695.
[6] A.F. Littke, C.Y. Dai, G.C. Fu, J. Am. Chem. Soc. 122 (2000) 4020–4028.
[7] D.S. McGuinness, K.J. Cavell, Organometallics 19 (2000) 741–748.
[8] A. Schnyder, A.F. Indolese, M. Studer, H.U. Blaser, Angew. Chem., Int. Ed. 41
(2002) 3668–3671.
[9] W.A. Herrmann, V.P.W. Bohm, C.P. Reisinger, J. Organomet. Chem. 576 (1999)
23–41.
[10] C.A. Fleckenstein, H. Plenio, Chem. Soc. Rev. 39 (2010) 694–711.
[11] C. Amatore, A. Jutand, Coord. Chem. Rev. 178 (1998) 511–528.
[12] N. Marion, S.P. Nolan, Acc. Chem. Res. 41 (2008) 1440–1449.
[13] A. Zapf, M. Beller, Top. Catal. 19 (2002) 101–109.
[14] L.X. Yin, J. Liebscher, Chem. Rev. 107 (2007) 133–173.
[15] K. Shimizu, R. Maruyama, S. Komai, T. Kodama, Y. Kitayama, J. Catal. 227 (2004)
202–209.
[16] B.M. Choudary, S. Madhi, N.S. Chowdari, M.L. Kantam, B. Sreedhar, J. Am. Chem.
Soc. 124 (2002) 14127–14136.
[17] G. Marck, A. Villiger, R. Buchecker, Tetrahedron Lett. 35 (1994) 3277–3280.
[18] F.X. Felpin, T. Ayad, S. Mitra, Eur. J. Org. Chem. 12 (2006) 2679–2690.
[19] K. Kohler, R.G. Heidenreich, J.G.E. Krauter, M. Pietsch, Chem. Eur. J. 8 (2002)
622–631.
[20] L. Djakovitch, K. Koehler, J. Am. Chem. Soc. 123 (2001) 5990–5999.
[21] L. Artok, H. Bulut, Tetrahedron Lett. 4 (2004) 3881–3884.
[22] A. Corma, H. Garcia, A. Leyva, Appl. Catal. A: Gen. 236 (2002) 179–185.
[23] L. Li, J.L. Shi, J.N. Yan, Chem. Commun. 17 (2004) 1990–1991.
[24] K. Shimizu, S. Koizumi, T. Hatamachi, H. Yoshida, S. Komai, T. Kodama, Y.
Kitayama, J. Catal. 228 (2004) 141–151.
Scheme 3. Schematic drawings of the synergetic catalytic effect between the highly
dispersed Pd0 and surface basicity of the mesoporous support for the C–C cou-
pling reactions: the oxidative addition step, which has been recognized as the
rate-determining step [45], is promoted by the electron donating effect of basic sup-
port surface and the high dispersion of Pd0 in the pore network of the mesoporous
support.
5. Conclusions
In conclusion, magnetically separable palladium-loaded meso-
porous NiFe2O4 catalysts (Pd/NF300 and Pd/NF700) have been
successfully prepared. Compared to other magnetic Pd-loaded cat-
alysts reported previously in literature, Pd/NF300 shows greatly
enhanced catalytic activities for both Suzuki and Heck reactions
in air using various aryl halides as reactants, under a very low
Pd using amount of 0.08 mol% based on aryl halide. Superparam-
agnetic Mesoporous NF300 has been found to be a distinguished
support possessing apparent basicity and well-defined mesoporous
structure for high Pd dispersion, synergistically accelerating the
catalytic reactions through promoting the oxidative addition step.
All these properties lead to an excellent catalyst Pd/NF300 with
high catalytic activity towards Suzuki and Heck reactions, excellent
reusability and magnetic separability.
[25] K. Kaneda, M. Higuchi, T. Imanaka, J. Mol. Catal. 63 (1990) L33–L36.
[26] A. Cwik, Z. Hell, F. Figueras, Adv. Synth. Catal. 348 (2006) 523–530.
[27] A. Desforges, R. Backov, H. Deleuze, O. Mondain-Monval, Adv. Funct. Mater. 15
(2005) 1689–1695.
[28] A. Desforges, H. Deleuze, O. Mondain-Monval, R. Backov, Ind. Eng. Chem. Res.
44 (2005) 8521–8529.
[29] S. Ungureanu, H. Deleuze, C. Sanchez, M.I. Popa, R. Backov, Chem. Mater. 20
(2008) 6494–6500.
[30] S. Ungureanu, H. Deleuze, O. Babot, M.F. Achard, C. Sanchez, M.I. Popa, R. Backov,
Appl. Catal. A: Gen. 390 (2010) 51–58.
[31] R. Abu-Reziq, H. Alper, D.S. Wang, M.L. Post, J. Am. Chem. Soc. 128 (2006)
5279–5282.
[32] Z.F. Wang, W. Yang, N.Y. He, Prog. Chem. 21 (2009) 2053–2059.
[33] S. Shylesh, J. Schweizer, S. Demeshko, V. Schunemann, S. Ernst, W.R. Thiel, Adv.
Synth. Catal. 351 (2009) 1789–1795.
[34] L.M. Rossi, L.L.R. Vono, F.P. Silva, P.K. Kiyohara, E.L. Duarte, J.R. Matos, Appl.
Catal. A: Gen. 330 (2007) 139–144.
[35] S. Shylesh, V. Schunemann, W.R. Thiel, Angew. Chem. Int. Ed. 49 (2010)
3428–3459.
[36] R. Abu-Reziq, D. Wang, M. Post, H. Alper, Chem. Mat. 20 (2008) 2544–2550.
[37] B. Baruwati, D. Guin, S.V. Manorama, Org. Lett. 9 (2007) 5377–5380.
[38] H. Yoon, S. Ko, J. Jang, Chem. Commun. 14 (2007) 1468–1470.
[39] Y.H. Zhu, S.C. Peng, A. Emi, S. Zhenshun, R.A. Monalisa, Kemp, Adv. Synth. Catal.
349 (2007) 1917–1922.
[40] A.J. Amali, R.K. Rana, Green Chem. 11 (2009) 1781–1786.
[41] Z. Gao, F.M. Cui, S.Z. Zeng, L.M. Guo, J.L. Shi, Micropor. Mesopor. Mater. 132
(2010) 188–195.
[42] R.L. Augustine, S.T. Oleary, J. Mol. Catal. A: Chem. 95 (1995) 277–285.
[43] C.R. LeBlond, A.T. Andrews, Y.K. Sun, J.R. Sowa, Org. Lett. 3 (2001) 1555–1557.
[44] N.T.S. Phan, M. Van Der Sluys, C.W. Jones, Adv. Synth. Catal. 348 (2006) 609–679.
[45] J.P. Corbet, G. Mignani, Chem. Rev. 106 (2006) 2651–2710.
[46] M.L. Kantam, K.B.S. Kumar, P. Srinivas, B. Sreedhar, Adv. Synth. Catal. 349 (2007)
1141–1149.
Acknowledgments
The authors gratefully acknowledge the financial support from
National Natural Science Foundation of China (grant no. 20633090,
20703055 and 50872140), and Shanghai Nano-Science Projects
(grant no. 0852nm03900).
References
[1] R.F. Heck, J.P. Nolley, J. Org. Chem. 37 (1972) 2320–2322.
[2] N. Miyaura, A. Suzuki, J. Chem. Soc. Chem. Commun. 19 (1979) 866–867.
[3] V. Farina, Adv. Synth. Catal. 346 (2004) 1553–1582.
[47] A.Y. Stakheev, L.M. Kustov, Appl. Catal. A: Gen. 188 (1999) 3–35.