G
Synthesis
N. Vagkidis et al.
Paper
and was added to the flask. Solid NaHCO (0.025 equiv) was then add-
Supporting Information
3
ed to the flask and the contents of the flask were stirred. After 5 min,
aldehyde (0.25 mmol) was added and the reaction was continued to
be stirred for a further 24 h. The stirring stopped after 24 h and the
Supporting information for this article is available online at
https://doi.org/10.1055/s-0039-1690150.
S
u
p
p
orit
n
g Inform ati
o
n
S
u
p
p
orit
n
g Inform ati
o
n
reaction was quenched with aq NH Cl and the solvent was removed
4
in vacuo at r.t. The crude product was re-dissolved in DCM and
References
washed with H O (5 mL) and extracted with DCM (3 × 10 mL). The
2
combined organic layers were dried (Na SO ) and filtered. The solu-
2
4
(
1) (a) Hughes, D. L. Org. Process Res. Dev. 2018, 22, 574. (b) de
tion was then concentrated in vacuo. The conversion of the reaction
Gama Oliveira, V.; do Carmo Cardoso, M. F.; da Silva Magalhães
Forezi, L. Catalysis 2018, 8, 605.
1
was determined by integrating the H NMR of the crude reaction mix-
ture using the aldehyde peak as a reference. Syn/anti ratio was deter-
(
(
(
2) List, B.; Lerner, R. A.; Barbas, C. F. III. J. Am. Chem. Soc. 2000, 122,
1
mined by integrating the H NMR of the crude reaction mixture and
2
395.
3) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc.
000, 122, 4243.
4) (a) Cobb, A. J. A.; Shaw, D. M.; Ley, S. V. Synlett 2004, 558.
b) Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley,
by comparing the two CHOH peaks. The enantiomeric excess of the
crude product was analysed by HPLC using a chiralpak IA, IBN-5, IC,
IB, and AD-H column. Representative data for 12-syn and 12-anti are
given below. See Supporting Information for data on 14a–i, 16, and
2
(
18.
S. V. Org. Biomol. Chem. 2005, 3, 84.
(
5) Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.;
Kjæsgaard, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127,
2
anti)
-[Hydroxy(4-nitrophenyl)methyl]cyclohexanone (12-syn and 12-
18296.
Yield: 89%, yellow oil; diastereomeric ratio: anti/syn: 5.3:1; 76% anti
ee.
(
6) (a) Burroughs, L.; Vale, M. E.; Gilks, J. A. R.; Forintos, H.; Hayes, C.
J.; Clarke, P. A. Chem. Commun. 2010, 46, 4776. (b) Burroughs, L.;
Clarke, P. A.; Forintos, H.; Gilks, J. A. R.; Hayes, C. J.; Vale, M. E.;
Wade, W.; Zbytniewski, M. Org. Biomol. Chem. 2012, 10, 1565.
12-syn Diastereomer
IR (ATR): 3517, 2940, 1700, 1516, 1346 cm–1
(7) Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.;
.
Barbas, C. F. III. J. Am. Chem. Soc. 2006, 128, 734.
1
H NMR (400 MHz, CDCl ): = 8.21 (2 H, m), 7.49 (2 H, m), 5.49 (1 H,
3
(
8) Steer, A. M.; Bia, N.; Smith, D. K.; Clarke, P. A. Chem. Commun.
017, 53, 10362.
br s), 3.18 (1 H, br s), 2.66–2.59 (1 H, m), 2.52–2.46 (1 H, m), 2.45–
2
2.35 (1 H, m), 2.15–2.08 (1 H, m), 1.89–1.82 (1 H, m), 1.76–1.65 (2 H,
(
9) A single report of 9·TFA exists; however, no data are reported:
Wang, Z.; Wei, P.; Xizhi, X.; Liu, Y.; Wang, L.; Wang, Q. J. Agric.
Food. Chem. 2012, 60, 8544.
m), 1.63–1.47 (2 H, m).
13
C NMR (400 MHz, CDCl ): = 214.0, 149.1, 147.1, 126.7, 123.8, 70.2,
3
56.9, 42.7, 28.0, 26.0, 25.0.
(
10) For representative examples, see: (a) Owolabi, I. A.; Reddy, U. V.
S.; Chennapuram, M.; Seki, C.; Okuyama, Y.; Kwon, E.; Uwai, K.;
Tokiwa, M.; Takeshita, M.; Nakano, H. Tetrahedron 2018, 74,
HRMS (ESI): m/z calcd for C13H15NO Na: 272.0893; found: 272.0875.
4
4
705. (b) Luo, S.; Xu, H.; Li, J.; Zhang, L.; Cheng, J.-P. J. Am. Chem.
1
2-anti Diastereoisomer
Soc. 2007, 129, 3074. (c) Jacoby, C. G.; Vontobel, P. H. V.; Bach,
M. F.; Schneider, P. H. New J. Chem. 2018, 42, 7416. (d) Serra-
Pont, A.; Alfonso, I.; Solà, J.; Jimeno, C. Org. Biomol. Chem. 2017,
IR (ATR): 3510, 2939, 1693, 1520, 1346 cm–1
.
1
H NMR (400 MHz, CDCl ): = 8.21 (2 H, m), 7.51 (2 H, m), 4.89 (1 H,
3
dd, J = 3.2, 8.35 Hz), 4.08 (1 H, d, J = 3.2 Hz), 2.64–2.54 (1 H, m), 2.53–
15, 6584.
2.46 (1 H, m), 2.42–2.31 (1 H, m), 2.15–2.08 (1 H, m), 1.89–1.79 (1 H,
(
11) (a) For mechanistic explanation, see: Bahmanya, S.; Houk, K. N.;
Martin, H. J.; List, B. J. Am. Chem. Soc. 2003, 125, 2475. For
reviews, see: (b) Guillena, G.; Nájera, C.; Ramón, D. J. Tetrahe-
dron: Asymmetry 2007, 18, 2249. (c) Heravi, M. M.; Zadsirjan,
V.; Dehghani, M.; Hosseintash, N. Tetrahedron: Asymmetry
m), 1.74–1.64 (1 H, m), 1.63–1.47 (2 H, m), 1.45–1.34 (1 H, m).
HRMS (ESI): m/z calcd for C13H15NO Na: 272.0893; found: 272.0879.
Spectroscopic data are in agreement with the literature.10a
4
Retention times for the syn and anti stereoisomers: syn-diastereo-
mer: minor enantiomer tR = 27.7 min, major enantiomer tR = 30.0
min; anti diastereomer: major enantiomer t = 34.6 min, minor enan-
tiomer t = 43.0 min.
2
017, 28, 587.
(12) Trost, B. M.; Brindle, C. S. Chem. Soc. Rev. 2010, 39, 1600.
(13) Van Zon, A.; Beyerman, H. C. Helv. Chim. Acta 1973, 56, 1729.
(14) Hoang, C. T.; Alezra, V.; Guillot, R.; Kouklovsky, C. Org. Lett.
R
R
2007, 9, 2521.
(15) Mangette, J. E.; Johnson, M. R.; Le, V.-D.; Shenoy, R. A.; Roark, H.;
Funding Information
Stier, M.; Belliotti, T.; Capiris, T.; Guzzo, P. R. Tetrahedron 2009,
65, 9536.
We thank the Department of Chemistry, The University of York for fi-
nancial support.()
(
16) Caputo, C. A.; Carneiro, F. d. S.; Jennings, M. C.; Jones, N. D. Can. J.
Chem. 2007, 85, 85.
©
2019. Thieme. All rights reserved. — Synthesis 2019, 51, A–G