K. Binnemans, B. Donnio et al.
FULL PAPER
imental set-ups, and in all cases, the powdered sample was filled in
Lindemann capillaries of 1 mm diameter. A linear monochromatic
Cu-Kα1 beam (λ = 1.5405 Å) obtained with a sealed-tube generator
(900 W) and a bent quartz monochromator were used (both gener-
ator and monochromator were manufactured by Inel). One set of
diffraction patterns was registered with a curved counter Inel CPS
120, for which the sample temperature is controlled within
0.05 °C; periodicities up to 60 Å can be measured. The other set
of diffraction patterns was registered on Image Plate. The cell pa-
rameters are calculated from the position of the reflections at the
smallest Bragg angle, which are in all cases the most intense. Peri-
odicities up to 90 Å can be measured, and the sample temperature
is controlled within 0.3 °C. The molecular modeling calculations
were performed on a SGI Origin 2800 20 CPU computer and on
an SGI Octane² calculators using Insight II and Discover 3 soft-
ware from Accelrys (www.accelrys.com) with the cvff forcefield. For
all models, prior to the dynamics, the systems were minimized to a
gradient of 0.05 kcalmol–1. The simulation then consisted of a 200
ps isotherm at 473 K in the NVT-PBC ensemble and with a 1 fs
time step.
= 3920.71 m/e; M (found) = 3921.65 m/e. IR (KBr): ν = 1633
˜
w
(C=N) cm–1.
Gd Complex 3: C230H382Gd2N4O26 (3934.01): C 70.22, H 9.79, N
1.42; found C 69.67, H 9.96, N 1.34. IR (KBr): ν = 1633 (C=N)
˜
cm–1.
Acknowledgments
K. B. and T. N. P.-V. thank the F.W.O.-Flanders (Belgium) for a
postdoctoral fellowship. T. C. is research assistant of the F.W.O.-
Flanders. Financial support by the F.W.O.-Flanders (G.0117.03)
and by the K.U. Leuven (GOA, 03/03) is gratefully acknowledged.
Funding for travel was obtained via a Tournesol project (Project
T2004.10). C. B., D. G. and B. D. thank CNRS and ULP for sup-
port and fundings.
[1] a) Metallomesogens, Synthesis Properties and Applications (Ed.:
J. L. Serrano), VCH, Weinheim (Germany), 1996; b) D. W.
Bruce, in: Inorganic Materials, 2nd ed., chapter 8, p. 429 (Eds.:
D. W. Bruce, D. O’Hare), Wiley, Chichester, 1996; c) K. Binne-
mans, C. Görller-Walrand, Chem. Rev. 2002, 102, 2303; d) B.
Donnio, D. Guillon, R. Deschenaux, D. W. Bruce, in: Compre-
hensive Coordination Chemistry II, J. A. McCleverty, T. J.
Meyer (Eds.), Elsevier, Oxford, 2003, vol. 7 (Eds.: M. Fujita,
A. Powell, C. Creutz), chapter 7.9, pp. 357–627.
Synthesis of the Schiff-Base Ligand LH3: The aldehyde 3-formyl-
4-hydroxyphenyl-3,4,5-tris(tetradecyloxy)benzoate was synthesized
as described elsewhere.[7] To
a solution of 3-formyl-4-hy-
droxyphenyl-3,4,5-tris(tetradecyloxy)benzoate (1.33 g, 0.002 mol)
in 200 mL of toluene was added 1,3-diamino-2-propanol (90 mg,
0.001 mol) and 5 drops of glacial acetic acid (as the catalyst). The
mixture was heated for 3 hours at reflux and water formed by the
reaction was removed azeotropically (Dean–Stark trap). After al-
lowing the solution to cool down to room temperature, the solvent
was removed at reduced pressure. The crude product was purified
by crystallization from absolute ethanol. Yield: 80% (1.11 g). 1H
NMR (CDCl3): δ = 0.89 (m, 18 H, CH3), 1.20–1.40 (m, 120 H,
CH2), 1.49 (m, 12 H, CH2–CH2–CH2–O), 1.70–1.90 (m, 12 H,
CH2–CH2–O), 3.70–3.95 (m, 4 H, N–CH2), 4.05 (m, 12 H, CH2–
O), 4.30 (m, 1 H, CH), 7.01 (d, 2 H, Harom), 7.14 (s, 2 H, Harom),
7.16 (d, 2 H, Harom), 7.39 (s, 4 Harom), 8.40 (s, 2 H, CH=N), 13.0
(br., OH) ppm. 13C NMR (CDCl3): δ = 14.1 (CH3), 22.7 (CH2),
26.1 (CH2), 29.3–30.3 (CH2), 31.9 (CH2), 63.3 (CH2–N), 69.3
(CH2–O), 70.5 (CH), 73.6 (CH2–O), 108.7 (Carom), 117.9 (Carom),
118.5 (Carom), 123.7 (Carom), 123.9 (Carom), 126.2 (Carom), 158.8
[2] a) R. Paschke, H. Zaschke, A. Mädicke, J. R. Chipperfield,
A. B. Blake, P. G. Nelson, G. W. Gray, Mol. Cryst. Liq. Cryst.
Lett. Sect. 1988, 6, 81; b) T. D. Shaffer, K. A. Sheth, Mol.
Cryst. Liq. Cryst. 1989, 172, 27; c) K. Miyamura, K. Sato, Y.
Gohshi, Bull. Chem. Soc. Jpn. 1989, 62, 45; d) R. Paschke, D.
Balkow, U. Baumeister, H. Hartung, J. R. Chipperfield, A. B.
Blake, P. G. Nelson, G. W. Gray, Mol. Cryst. Liq. Cryst. 1990,
188, 105; e) K. Ohta, Y. Morizumi, T. Fujimoto, I. Yamamoto,
K. Miyamura, Y. Gohshi, Mol. Cryst. Liq. Cryst. 1992, 214,
161; f) A. Serrette, P. J. Carroll, T. M. Swager, J. Am. Chem.
Soc. 1992, 114, 1887 (Corrigendum: J. Am. Chem. Soc. 1993,
115, 11656); g) R. Paschke, S. Diele, I. Letko, A. Wiegeleben,
G. Pelzl, K. Griesar, M. Athanassopoulou, W. Haase, Liq.
Cryst 1995, 18, 451; h) A. B. Blake, J. R. Chipperfield, W. Hus-
sain, R. Paschke, E. Sinn, Inorg. Chem. 1995, 34, 1125; i) R.
Paschke, D. Balkow, E. Sinn, Inorg. Chem. 2002, 41, 1949; j) I.
Sakata, K. Miyamura, Chem. Commun. 2003, 156.
(C=O), 166.7 (C=N) ppm. IR (KBr): ν = 1641 (C=N), 1201 (C–
˜
[3] N. Hoshino, Coord. Chem. Rev. 1998, 174, 77.
O) cm–1. C115H194N2O13 (1812.78): calcd. C 76.19, H 10.79, N 1.55;
found C 76.18, H 10.99, N 1.42.
[4] a) I. Aiello, M. Ghedini, F. Neve, D. Pucci, Chem. Mater. 1997,
9, 2107; b) I. Aiello, M. Ghedini, M. La Deda, D. Pucci, O.
Francescangeli, Eur. J. Inorg. Chem. 1999, 1367.
Synthesis of the Lanthanide(III) Complexes: The dinuclear lantha-
nide complexes (Ln = Nd, Sm, Gd) of the Schiff-base ligand LH3
were synthesized by reaction between the lanthanide acetate salt
Ln(CH3COO)3·xH2O (1.1 equiv.) and the Schiff base (1 equiv.) in
chloroform at refluxing temperature overnight. The acetate ions act
as the base to deprotonate the ligand. The complexes were purified
by crystallization from a water/ethyl acetate mixture, and were ob-
tained in moderate yields: 74% for the Nd complex 1, 62% for
the Sm complex 2 and 49% for the Gd complex 3. MALDI-TOF
measurements show a molecular peak that corresponds to the dinu-
clear species with the stoichiometry [Ln2L2] for the neodymium()
and samarium() complexes.
[5] K. Binnemans, D. W. Bruce, S. R. Collinson, R. Van Deun,
Yu. G. Galyametdinov, F. Martin, Phil. Trans. Royal Soc., A
1999, 357, 3063.
[6] a) A. G. Serrette, T. M. Swager, J. Am. Chem. Soc. 1993, 115,
8879; b) D. Killian, D. Knawby, M. A. Athanassopoulou, S. T.
Trzaska, T. M. Swager, S. Wróbel, W. Haase, Liq. Cryst. 2000,
27, 509; c) W. Haase, D. Killian, M. A. Athanassopoulou, D.
Knawby, T. M. Swager, S. Wróbel, Liq. Cryst. 2002, 29, 133.
[7] a) K. Binnemans, K. Lodewyckx, B. Donnio, D. Guillon,
Chem. Eur. J. 2002, 8, 1101; b) K. Binnemans, K. Lodewyckx,
Supramol. Chem. 2003, 15, 485.
[8] K. Binnemans, K. Lodewyckx, B. Donnio, D. Guillon, Eur. J.
Inorg. Chem. 2005, 1506.
[9] Yu. Galyametdinov, M. A. Athanassopoulou, K. Griesar, O.
Kharitonova, E. A. Soto Bustamante, L. Tinchurina, I. Ovch-
innikov, W. Haase, Chem. Mater. 1996, 8, 922.
[10] K. Binnemans, Yu. G. Galyametdinov, R. Van Deun, D. W.
Bruce, S. R. Collinson, A. P. Polishchuk, I. Bikchantaev, W.
Haase, A. V. Prosvirin, L. Tinchurina, I. Litvinov, A. Gu-
bajdullin, A. Rakhmatullin, K. Uytterhoeven, L. Van Meerv-
elt, J. Am. Chem. Soc. 2000, 122, 4335.
Nd Complex 1: C230H382N4Nd2O26 (3907.99): calcd. C 70.69, H
9.85, N 1.43; found C 70.79, H 9.84, N 1.44. MALDI-TOF:
Mw(isotopic) = 3907.68 m/e; Mw(found) = 3909.30 m/e. IR (KBr):
ν = 1633 (C=N) cm–1.
˜
Sm Complex 2: C230H382N4O26Sm2 (3920.23): C 70.47, H 9.82, N
1.43; found C 69.97, H 9.69, N 1.41. MALDI-TOF: Mw(isotopic)
156
www.eurjic.org
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2006, 150–157