10.1002/chem.202100922
Chemistry - A European Journal
FULL PAPER
where ΦΔ is the singlet oxygen quantum yield; the superscript ref stands
for 2,6-diiodoBODIPY (0.85 in toluene)[81]; k is the slope of the curves of
DMA absorption (376 nm) change vs. irradiation time; Iabs represents the
absorption correction factor which is given by I = 1–10-OD (OD is the
optical density at 514 nm).
[11] a) K. Nagarajan, A. R. Mallia, K. Muraleedharan, M. Hariharan, Chem
Sci. 2017, 8, 1776-1782; b) Z. Wang, L. Huang, Y. Yan, A. M. El-Zohry,
A. Toffoletti, J. Zhao, A. Barbon, B. Dick, O. F. Mohammed, G. Han,
Angew. Chem. Int. Ed. 2020, 59, 16114-16121; Angew. Chem. Int. Ed.
2020, 132, 16248-16255.
[12] D. Sasikumar, A. T. John, J. Sunny, M. Hariharan, Chem. Soc. Rev.
2020, 49, 6122-6140.
X-ray Crystallography
[13] a) Z. Wang, J. Zhao, Org. Lett. 2017, 19, 4492-4495; b) S. Kim, Y.
Zhou, N. Tohnai, H. Nakatsuji, M. Matsusaki, M. Fujitsuka, M. Miyata, T.
Majima, Chem. Eur. J. 2018, 24, 636-645.
Diffraction patterns were collected using CuK⍺ and MoK⍺ radiation
(Bruker Duo, Bruker AXS package)[82]; solved with direct methods
(ShelXT)[83] and refined with Shelxl[84] in the shelxle GUI.[85] Non-H atoms
were refined with anisotropic thermal parameters; H-atoms were placed
at geometrically ideal positions with riding thermal parameters. Full
details are given in the supplementary information.
[14] a) J. H. Golden, L. Estergreen, T. Porter, A. C. Tadle, D. M. R.
Sylvinson, J. W. Facendola, C. P. Kubiak, S. E. Bradforth, M. E.
Thompson, ACS Appl. Energy Mater. 2018, 1, 1083-1095; b) W. Huang,
X. Zhang, B. Chen, H. Miao, C.O. Trindle, Y. Wang, Y. Luo, G. Zhang,
Chem. Commun. 2019, 55, 67-70; c) J.-X. Wang, L.-Y. Niu, P.-Z. Chen,
Y.-Z. Chen, Q.-Z. Yang, R. Boulatov, Chem. Commun. 2019, 55, 7017-
7020.
[15] a) C. Trinh, K. O. Kirlikovali, S. Das, M. E. Ener, H. B. Gray, P. I.
Djurovich, S. Bradforth, M. E. Thompson, J. Phys. Chem. C 2014, 118,
21834-21845; b) S. Das, W. G. Thornbury, A. N. Bartynski, M. E.
Thompson, S. E. Bradforth, J. Phys. Chem. Lett. 2018, 9, 3264-3270; c)
J. Karges, U. Basu, O. Blacque, H. Chao, G. Gasser, Angew. Chem. Int.
Ed. 2019, 58, 14334-14340; Angew. Chem. 2019, 131, 14472-14478.
[16] S. M. Sartor, B. G. McCarthy, R. M. Pearson, G. M. Miyake, N. H.
Damrauer, J. Am. Chem. Soc. 2018, 140, 4778-4781.
Acknowledgements
This work was prepared with the support of funding from the
European Union’s Horizon 2020 research and innovation
programme under the FET-OPEN grant agreement No.828779
and the Technical University of Munich – Institute for Advanced
Study through a Hans Fischer Senior Fellowship. M.A.F. and
A.S. acknowledge the TU Dublin Research Scholarship
programme for support of this work.
[17] Y. Tsuga, M. Katou, S. Kuwabara, T. Kanamori, S. Ogura, S. Okazaki,
H. Ohtani, H. Yuasa, Chem. Asian J. 2019, 14, 2067-2071.
[18] a) Y. Zhao, X. Li, Z. Wang, W. Yang, K. Chen, J. Zhao, G. G.
Gurzadyan, J. Phys. Chem. C 2018, 122, 3756-3772; b) Y. Zhao, R.
Duan, J. Zhao C. Li, Chem. Commun. 2018, 54, 12329-12332.
[19] J. W. Verhoeven, J. Photochem. Photobiol. C 2006, 7, 40-60.
[20] a) Z. E. X. Dance, S. M. Mickley, T. M. Wilson, A. B. Ricks, A. M. Scott,
M. A. Ratner, M. R. Wasielewski, J. Phys. Chem. A 2008, 112, 4194-
4201; b) Z. E. X. Dance, Q. Mi, D. W. McCamant, M. J. Ahrens, M. A.
Ratner, M. R. Wasielewski, J. Phys. Chem. B 2006, 110, 25163-25173;
c) D. J. Gibbons, A. Farawar, P. Mazzella, S. Leroy-Lhez, R. M.
Williams, Photochem. Photobiol. Sci. 2020, 19, 136-158.
Keywords: BODIPY • photosensitization • singlet oxygen •
quantitative structure-property relationship • machine learning.
[1]
[2]
[3]
a) N. A. Romero, D.A. Nicewicz, Chem. Rev. 2016, 116, 10075-10166;
b) M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81,
6898-6926; c) F. Glaser, O. S. Wenger, Coord. Chem. Rev. 2020, 405,
213129.
a) S. Kwiatkowski, B. Knap, D. Przystupski, J. Saczko, E. Kedzierska, K.
Knap-Czop, J. Kotlinska, O. Michel, K. Kotowski, J. Kulbacka, Biomed.
Pharmacother. 2018, 106, 1098-1107; b) S. Callaghan, M. O. Senge,
Photochem. Photobiol. Sci. 2018, 17, 1490-1519.
[21] G. Grampp, Angew. Chem. Int. Ed. 1993, 32, 691-693; Angew. Chem.
1993, 105, 724-726.
[22] J. T. Buck, A. M. Boudreau, A. DeCarmine, R. W. Wilson, J. Hampsey,
T. Mani, Chem 2019, 5, 138-155.
a) F. N. Castellano, C. E. McCusker, Dalton Trans. 2015, 44, 17906-
17910; b) J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li, Chem. Rev., 2015,
115, 395-465; c) P. Bharmoria, H. Bildirir, K. Moth-Poulsen, Chem. Soc.
Rev. 2020, 49, 6529-6554.
[23] V.-N. Nguyen, Y. Yim, S. Kim, B. Ryu, K. M. K. Swamy, G. Kim, N.
Kwon, C.-Y. Kim, S. Park, J. Yoon, Angew. Chem. Int. Ed. 2020, 59,
8957-8962; Angew. Chem. 2020, 132, 9042-9047.
[24] Z. Mahmood, N. Rehmat, S. Ji, J. Zhao, S. Sun, M. Di Donato, M. Li, M.
Teddei, Y. Huo, Chem. Eur. J. 2020, 26, 14912-14918.
[4]
[5]
[6]
J. Zhao, K. Xu, W. Yang, Z. Wang, F. Zhong, Chem. Soc. Rev. 2015,
44, 8904-8939.
[25] a) J. Deckers, T. Cardeynaels, H. Penxten, A. Ethirajan, M. Ameloot, M.
Kruk, B. Champagne, W. Maes, Chem. Eur. J. 2020, 26, 15212-15225;
b) Y. Dong, A. Elmali, J. Zhao, B. Dick, A. Karatay, ChemPhysChem
2020, 21, 1388-1401.
L. Huang, X. Cui, B. Therrien, J. Zhao, Chem. Eur. J. 2013, 19, 17472-
17482.
a) J. Zhao, W. Wu, J. Sun, S. Guo, Chem. Soc. Rev. 2013, 42, 5323-
5351; b) J. Zhao, K. Xu, W. Yang, Z. Wang, F. Zhong, Chem. Soc. Rev.
2015, 44, 8904-8939.
[26] I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P.
McCabe, J. Pearson, R. Taylor, Acta Cryst. 2002, B58, 389-397.
[28] M. A. Filatov, S. Karuthedath, P. M. Polestshuk, S. Callaghan, K. J.
Flanagan, T. Wiesner, F. Laquai, M.O. Senge, ChemPhotoChem 2018,
2, 606-615.
[7]
a) S. P. Pitre, C. D. McTiernan, H. Ismaili, J. C. Scaiano, J. Am. Chem.
Soc. 2013, 135, 13286-13289; b) E. Speckmeier, T. G. Fischer, K.
Zeitler, J. Am. Chem. Soc. 2018, 140, 15353-15365; c) N. J. Treat, H.
Sprafke, J. W. Kramer, P. G. Clark, B. E. Barton, J. Read de Alaniz, B.
P. Fors, C. J. Hawker, J. Am. Chem. Soc. 2014, 136, 16096-16101; d)
S. M. Sartor, B. G. McCarthy, R. M. Pearson, G. M. Miyake, N. H.
Damrauer, J. Am. Chem. Soc. 2018, 140, 4778-4781; e) D. A. Nicewicz,
T. M. Nguyen, ACS Catal. 2014, 4, 355-360; f) C. Li, Y. Xu, W. Tu, G.
Chen, R. Xu, Green Chem. 2017, 19, 882-899; g) J. Zhao, K. Xu, W.
Yang, Z. Wang, F. Zhong, Chem. Soc. Rev. 2015, 44, 8904-8939.
J. Zhao, W. Wu, J. Sun, S. Guo, Chem. Soc. Rev. 2013, 42, 5323-5351.
M. Bröring, R. Krüger, S. Link, C. Kleeberg, S. Köhler, X. Xie, B.
Ventura, L. Flamigni, Chem. Eur. J. 2008, 14, 2976-2983.
[29] a) Z. Wang, J. Zhao, M. Di Donato, G. Mazzone, Chem. Commun.
2019, 55, 1510-1513; b) Z. Wang, M. Ivanov, Y. Gao, L. Bussotti, P.
Foggi, H. Zhang, N. Russo, B. Dick, J. Zhao, M. Di Donato, G.
Mazzone, L. Luo, M. Fedin, Chem. Eur. J. 2020, 26, 1091-1102.
[30] K. Chen, W. Yang, Z. Wang, A. Iagatti, L. Bussotti, P. Foggi, W. Ji, J.
Zhao, M. Di Donato, J. Phys. Chem. A 2017, 121, 7550-7564.
[31] Y. Hou, I. Kurganskii, A. Elmali, H. Zhang, Y. Gao, L. Lv, J. Zhao, A.
Karatay, L. Luo, M. Fedin, J. Chem. Phys. 2020, 152, 114701.
[32] Y. Dong, A. A. Sukhanov, J. Zhao, A. Elmali, X. Li, B. Dick, A. Karatay,
V. K. Voronkova, J. Phys. Chem. C 2019, 123, 22793-22811.
[33] M. A. Filatov, S. Karuthedath, P. M. Polestshuk, H. Savoie, K. J.
Flanagan, C. Sy, E. Sitte, M. Telitchko, F. Laquai, R. W. Boyle, M. O.
Senge, J. Am. Chem. Soc. 2017, 139, 6282-6285.
[8]
[9]
[10] Y. Cakmak, S. Kolemen, S. Duman, Y. Dede, Y. Dolen, B. Kilic, Z.
Kostereli, L. T. Yildirim, A.L. Dogan, D. Guc, E. U. Akkaya, Angew.
Chem. Int. Ed. 2011, 50, 11937-11941; Angew. Chem. 2011, 123,
12143-12147.
12
This article is protected by copyright. All rights reserved.