Electron Transfer to Endoperoxides
4012±4020
ferrocene was added to the cell and a series of ferrocene/ferrocenium
voltammograms were acquired. The standard potentials for the reversible
homogeneous donors and ferrocene were determined as the average of the
anodic and cathodic peak potentials. Simulation of homogeneous redox
catalysis data was performed with Digisim 2.1ꢂ software.
[13] C. W. Jefford, M. G. H. Vicente, Y. Jacquier, F. Favarger, J. Mareda, P.
Millasson-Schmidt, G. Brunner, U. Burger, Helv. Chim. Acta 1996, 79,
1475.
[14] R. K. Haynes, S. C. Vonwiller, Acc. Chem. Res. 1997, 30, 73.
[15] M. Hamzaoui, O. Provot, B. Camuzat-Dedenis, H. Moskiwitz, J.
Â
Mayrargue, L. Ciceron, F. Gay, Tet. Lett. 1998, 39, 4029.
Preparative electrolysis: All preparative electrolysis was carried out in
argon-purged solutions containing TEAP (0.1m, 25 mL), with the reference
and glassy carbon electrode described for cyclic voltammetry. The working
electrode was a reticulated vitreous-carbon or platinum gauze and the
anode a platinum wire that was separated by a glass tube with a sintered
[16] J. N. Cumming, D. Wang, S. B. Park, T. A. Shapiro, G. H. Posner, J.
Med. Chem. 1998, 41, 952.
[17] G. H. Posner, M. H. Parker, J. Northrop, F. S. Elias, P. Ploypradith, S.
Xie, T. A. Shapiro, J. Med. Chem. 1999, 42, 300.
[18] G. H. Posner, J. N. Cumming, S.-H. Woo, P. Ploypradith, S. Xie, T. A.
Shapiro, J. Med. Chem. 1998, 41, 940.
[19] J. Bhisutthibhan, X.-C. Pan, D. J. Hossler, D. J. Walker, C. A. Yowell,
J. Carlton, J. B. Dame, S. R. Meshnick, J. Biol. Chem. 1998, 273, 16192.
[20] Y. Wu, Y. Y. Zheng, Y.-L. Wu, Angew. Chem. 1999, 111, 2730 ± 2733;
Angew. Chem. Int. Ed. 1999, 38, 2580.
bottom and
a 3 mm layer of neutral alumina. Constant potential
electrolysis was carried out in an identical cell to that described for
constant current electrolysis, except that the electrodes were connected to a
potentiostat. Electrolysis was carried out at a potential of approximately
100 mV past the peak maximum and continued until the current was
reduced to the initial background level.
[21] W.-M. Wu, Y. Wu, Y.-L. Wu, Z.-J. Tao, C.-M. Zhou, Y. Li, F. Shan, J.
Am. Chem. Soc. 1998, 120, 3316.
[22] A. Robert, B. Meunier, Chem. Eur. J. 1998, 4, 1287.
A cyclic voltammogram on a small 3 mm glassy carbon electrode was used
as a probe for the concentration of the substrate in the electrolysis cell in
both constant potential and constant current experiments. After electrol-
ysis, water (40 mL) was added to the cell, and the contents were extracted
with dichloromethane (4 Â 20 mL). The organic extracts were then washed
with water (2 Â 20 mL), dried over sodium sulfate, filtered and evaporated.
In the preparative scale electrolysis of ASC and DASC, only one product
was formed in each; this corresponded to the following: electrolysis of
ASC: cis-1-isopropyl-4-methylcyclohex-2-ene-1,4-diol. 1H NMR (CDCl3):
d 0.87 (d, J 6.9 Hz, 3H), 0.93 (d, J 6.9 Hz, 3H), 1.23 (s, 3H), 1.62 ± 1.87
(m, 7H), 5.53 (dd, J 10.1,1.3 Hz, 1H), 5.69 (dd, J 10.1, 1.3 Hz, 1H);
13C NMR (CDCl3): d 16.72, 18.74, 27.38, 35.19, 37.52, 69.88, 72.18, 137.54,
132.36; IR: 3353 cm 1 (br), 3024, 2969, 2880, 1606, 1374, 1381, 1138, 1004;
MS: m/z (%): 155 (12), 127 (62), 109 (100). Deuterium exchange verified
that there were two alcoholic protons.
Â
[23] G. H. Posner, D. Wang, L. Gonzalez, X. Tao, J. N. Cumming, D.
Klinedinst, T. A. Shapiro, Tetrahedron Lett. 1996, 37, 815.
[24] A. Robert, B. Meunier, Chem. Soc. Rev. 1998, 27, 273.
[25] R. K. Haynes, S. C. Vonwiller, Tetrahedron Lett. 1996, 37, 253.
[26] R. K. Haynes, S. C. Vonwiller, Tetrahedron Lett. 1996, 37, 257.
[27] A. Robert, G. Meunier, J. Am. Chem. Soc. 1997, 119, 5968.
Â
[28] G. H. Posner, S. B. Park, L. Gonzalez, D. Wang, J. N. Cumming, D.
Klinedinst, T. A. Shapiro, M. D. Bachi, J. Am. Chem. Soc. 1996, 118,
3537.
[29] P. M. OꢁNeill, L. P. Bishop, N. J. Searle, J. L. Maggs, S. A. Ward, P. G.
Bray, R. C. Storr, B. K. Park, Tetrahedron Lett. 1997, 38, 4263.
[30] W. Adam, A. Schonberger, Chem. Ber. 1992, 125, 2149.
[31] J. Koo, G. B. Schuster, J. Am. Chem. Soc. 1978, 100, 4496.
[32] G. B. Schuster, Acc. Chem. Res. 1979, 12, 366.
[33] G. B. Schuster in Advances in Electron Transfer Chemistry Vol. 1 (Ed.:
P. S. Mariano), JAI Press, Greenwich, 1991, p. 163.
[34] J. J. Zupancic, K. A. Horn, G. B. Schuster, J. Am. Chem. Soc. 1980,
102, 5279.
Electrolysis of DASC: cis-1-isopropyl-4-methylcyclohexane-1,4-diol.
1H NMR (CDCl3): d 0.85 (d, J 6.9 Hz, 6H), 1.15 (s, 3H), 1.32 ± 1.86
(m, 10H); 13C NMR (CDCl3): d 16.76, 25.79, 31.89, 35.78, 36.11, 38.76,
1
70.25; MS: m/z (%): 154 (8), 139 (10), 129 (15), 111 (100); IR: 3353 cm
(br), 2956, 2875, 1371, 1379, 1123, 998. Deuterium exchange verified that
there were two alcoholic protons.
[35] W. Adam, I. Erden, Angew. Chem. 1978, 90, 223; Angew. Chem. Int.
Ed. Engl. 1978, 17, 210.
[36] W. Adam, O. Cueto, J. Am. Chem. Soc. 1979, 101, 6511.
[37] W. Adam, K. Zinner, A. Krebs, H. Schmalstieg, Tetrahedron Lett.
1981, 22, 4567.
[38] Y. Takano, T. Tsunesad, H. Isobe, Y. Yoshioka, K. Yamaguchi, I. Saito,
Bull. Chem. Soc. Jpn. 1999, 72, 213.
[39] T. Wilson, Photochem. Photobiol. 1995, 62, 601.
[40] W. Adam, A. V. Trofimov, J. Org. Chem. 2000, 65, 6474.
[41] W. Adam, M. Matsumoto, A. V. Trofimov, J. Org. Chem. 2000, 65,
2078.
[42] W. Adam, M. Matsumoto, A. V. Trofimov, J. Am. Chem. Soc. 2000,
122, 8631.
Acknowledgements
The financial support of the Natural Sciences and Engineering Research
Council of Canada (NSERC), the Canadian Foundation for Innovation,
ORCDF, and the University of Western Ontario (ADF) is gratefully
acknowledged. R.L.D. thanks NSERC for a PGS scholarship. Professor
Flavio Maran is thanked graciously for numerous and fruitful discussions,
and for providing analysis software.
[43] S. Yamada, K. Nakayama, H. Takayama, J. Org. Chem. 1983, 48, 3477.
[44] M. G. Zagorski, R. G. Salomon, J. Am. Chem. Soc. 1982, 104, 3498.
[45] N. T. Kjñr, H. Lund, Acta Chem. Scand. 1995, 49, 848.
[46] S. Antonello, M. Musumeci, D. D. M. Wayner, F. Maran, J. Am. Chem.
Soc. 1997, 119, 9541.
[47] M. S. Workentin, F. Maran, D. D. M. Wayner, J. Am. Chem. Soc. 1995,
117, 2120.
[48] R. L. Donkers, F. Maran, D. D. M. Wayner, M. S. Workentin, J. Am.
Chem. Soc. 1999, 121, 7239.
[1] E. L. Clennan, C. S. Foote in Organic Peroxides (Ed.: W. Ando),
Wiley, Chichester, England, 1992, p. 225.
[2] D. A. Casteel, Nat. Prod. Rep. 1999, 16, 55.
[3] R. G. Salomon, Acc. Chem. Res. 1985, 18, 294.
[4] W.-S. Zhou, X.-X. Xu, Acc. Chem. Res. 1994, 27, 211.
[5] J. A. Vroman, I. A. Khan, M. A. Avery, Tetrahedron Lett. 1997, 38,
6173.
Â
[49] R. L. Donkers, M. S. Workentin, J. Phys. Chem. 1998, 102, 4061.
[50] R. L. Donkers, J. Tse, M. S. Workentin, Chem. Commun. 1999, 135.
[51] M. S. Workentin, R. L. Donkers, J. Am. Chem. Soc. 1998, 120, 2664.
[52] D. D. M. Wayner, V. D. Parker, Acc. Chem. Res. 1993, 26, 287.
[53] C. G. Moore, J. Chem. Soc. 1951, 234.
[54] A. C. Baldwin, The Chemistry of Peroxides, Wiley, New York, 1983.
[55] L. Batt, K. Kristie, R. T. Milne, A. Summers, Int. J. Chem. Kinet. 1974,
6, 877.
[6] G. H. Posner, L. Gonzalez, J. N. Cumming, D. Klinedinst, T. A.
Shapiro, Tetrahedron 1997, 53, 37.
[7] F. Zouhiri, D. Desmaele, J. dꢁAngelo, J. Mahuteau, C. Riche, F. Gay, L.
Ciceron, Eur. J. Org. Chem. 1998, 2897.
[8] E. Van Geldre, A. Vergauwe, E. Van den Eeckhout, Plant Mol. Biol,
1997, 33, 199.
[9] G. H. Posner, H. OꢁDowd, T. Caferro, J. N. Cumming, P. Ploypradith,
S. Xie, T. A. Shapiro, Tetrahedron Lett. 1998, 39, 2273.
[10] H. OꢁDowd, P. Ploypradith, S. Xie, T. A. Shapiro, G. H. Posner,
Tetrahedron 1999, 55.
È
Â
[56] J.-M. Saveant in Advances in Electron Transfer Chemistry (Ed.: P. S.
Mariano), JAI Press, Greenwich, CT, 1994, p. 53.
Â
[57] C. P. Andrieux, I. Gallardo, J.-M. Saveant, K.-B. Su, J. Am. Chem. Soc.
[11] S. R. Meshnick, T. E. Taylor, S. Kamchonwongpaisan, Microbiol. Rev.
1996, 60, 301.
1986, 108, 638.
Â
[58] J.-M. Saveant, Acc. Chem. Res. 1993, 26, 455.
[12] M. Jung, S. Lee, Heterocycles 1997, 45, 1055.
Chem. Eur. J. 2001, 7, No. 18
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
0947-6539/01/0718-4019 $ 17.50+.50/0
4019