C O M M U N I C A T I O N S
Treatment of the same peptide with 200 mM H2O2 led to a mixture
of non-, mono-, and disulfoxidized species. Reduction of the oxidant
concentration, however, led to satisfactory homogeneity. For the
same reason, we chose to substitute methionine with norleucine
(MNor), an efficient analogue with an oxidation-resistant side chain.25
In summary, we have demonstrated the production of genetically
encoded dehydropeptides. Our approach employs unmodified
components from the translation machinery of E. coli and mild but
robust conditions to install multiple electrophilic functions in linear
or cyclic peptides. The simplicity of this methodology should allow
wide applicability, making highly decorated peptides available
independently of solid-phase peptide synthesis. Furthermore, having
introduced ∆Ala to the toolbox of mRNA-templated peptide
synthesis, we may now embark on ultrahigh throughput selections
for specific protein-reactive or catalytically active compounds.
Figure 2. Incorporation of ∆Ala into a cyclic scaffold. Two concomitant
SN2 reactions between two peptide-borne thiols (A, mcalc ) 1923.7 Da) and
one equivalent of R,R′-dibromo-m-xylene lead to peptide cyclization.
Possible side products, such as the linear adduct of two equivalents of xylene
and one peptide, are not observed (B, mcalc ) 1900.8 Da). A minor signal
16 Da higher than the expected mass indicates partial sulfoxidation of the
newly formed thioethers by the conditions used for ∆Ala formation.
Acknowledgment. We thank Drs. M. C. T. Hartman, K.
Josephson, and B. Seelig for their insightful advice. J.W.S. is an
Investigator of the Howard Hughes Medical Institute, and F.P.S.
is supported by the National Institutes of Health (GM 074505-02).
Supporting Information Available: Experimental details. This
incorporation of KSe does not significantly inhibit the translational
machinery and that lysine incorporation is effectively outcompeted
(Figure 1A).
References
(1) Walsh, C. T. Antibiotics, Actions, Origins, Resistance; ASM Press:
Washington, DC, 2003.
Translated and purified selenopeptide (Figure 1, peptide 2) was
then converted into the corresponding dehydropeptide by incubation
with 200 mM H2O2 at pH 5-6 on ice for 1 h.17 The mass difference
between starting material and the oxidized peptide as determined
by MALDI-TOF is consistent with elimination of three formal
equivalents of 2-amino ethylselenol (-3 × 125 Da) accompanied
by sulfoxidation of the N-terminal methionine (+16) (Figure 1B).
The formation of three electrophilic functions was further confirmed
by intermolecular thiol conjugation by incubating the oxidized
peptide with 100 mM L-cysteine (Figure 1C). Indeed, a large variety
of nucleophiles may be reacted with ∆Ala-containing peptides, and
thus our approach presents a general method for the site-directed
incorporation of small molecules into translated peptides or
proteins.16
Finally, we aimed at introducing ∆Ala into cyclic peptides so
as to enhance our mimicry of ∆Ala-containing natural products
and ultimately set the stage for the in vitro selection of novel, drug-
like molecules. Biologically active peptides are very often cyclic
because cyclization improves proteolytic stability,21 membrane
solubility,22 and target affinity/specificity.23 We exploited the recent
discovery that R,R′-dibromo-m-xylene can cross-link and therefore
cyclize peptides that contain two cysteine residues.24 The two
resulting thioether bonds are stable, apolar, and may improve
bioavailability.
(2) Finking, R.; Marahiel, M. A. Annu. ReV. Microbiol. 2004 58, 453-488.
(3) Roberts, R. W.; Szostak, J. W. Proc. Natl. Acad. Sci. U.S.A. 1997, 94,
12297-12302.
(4) Keefe, A. D.; Szostak, J. W. Nature 2001, 410, 715-718.
(5) Shimizu, Y.; Inoue, A.; Tomari, Y.; Suzuki, T.; Yokogawa, T.; Nishikawa,
K.; Ueda, T. Nat. Biotechnol. 2001, 19, 751-755.
(6) Josephson, K.; Hartman, M. C. T.; Szostak, J. W. J. Am. Chem. Soc 2005,
127, 11727-11735.
(7) Forster, A. C.; Tan, Z.; Nalam, M. N. L.; Lin, H.; Qu, H.; Cornish, V.
W.; Blacklow, S. C. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 6353-6357.
(8) Tan, Z.; Forster, A. C.; Blacklow, S. C.; Cornish, V. W. J. Am. Chem.
Soc. 2004, 126, 12752-12753.
(9) Dedkova, L. M.; Fahmi, N. E.; Golovine, S. Y.; Hecht, S. M. J. Am.
Chem. Soc. 2003, 125, 6616-6617.
(10) Eisenhauer, B. M.; Hecht, S. M. Biochemistry 2002, 41, 11472-11478.
(11) Chatterjee, C.; Paul, M.; Xie, L. L.; van der Donk, W. A. Chem. ReV.
2005, 105, 633-683.
(12) MacKintosh, R. W.; Dalby, K. N.; Campbell, D. G.; Cohen, P. T. W.;
Cohen, P.; MacKintosh, C. FEBS Lett. 1995, 371, 236-240.
(13) Bagley, M. C.; Dale, J. W.; Merritt, E. A.; Xiong, A. Chem. ReV. 2005,
105, 685-714.
(14) Humphrey, J. M.; Chamberlin, A. R. Chem. ReV. 1997, 97, 2243-2266.
(15) Drahl, C.; Cravatt, B. F.; Sorensen, E. J. Angew. Chem., Int. Ed. 2005,
44, 5788-5809.
(16) Gieselman, M. D.; Zhu, Y. T.; Zhou, H.; Galonic, D.; van der Donk, W.
A. Chembiochem 2002, 3, 709-716.
(17) Okeley, N. M.; Zhu, Y. T.; van der Donk, W. A. Org. Lett. 2000, 2,
3603-3606.
(18) De Marco, C.; Busiello, V.; Digirolamo, M.; Cavallini, D. Biochim.
Biophys. Acta 1976, 454, 298-308.
(19) The synthesis of KSe has been described before (ref 20). KSe synthesized
from sodium borohydride reduced L-selenocysteine, and 2-bromoethy-
lamine was characterized by MS (EI) m/z (M + H)+ 213.0.
(20) De Marco, C.; Rinaldi, A.; Dernini, S.; Cavallini, D. Gazz. Chim. 1975,
105, 1113-1115.
A model peptide (Figure 2, peptide 3) was produced by in vitro
translation and adsorbed onto NTA-agarose beads. These beads
were then treated with 5 mM R,R′-dibromo-m-xylene and 0.2 mM
tris(carboxyethyl)phosphine in a 1:4 acetonitrile:50 mM Tris-HCl
buffer, pH 8.0 for 1 h at room temperature. The peptides were then
eluted with 0.2% TFA and oxidized with 20 mM H2O2 at pH 5.0
for 1 h and then analyzed by MALDI-TOF (Figure 2B). The
observed mass is consistent with the desired structure with a minor
signal consistent with sulfoxidation of one of the two thioethers.
(21) March, D. R.; Abbenante, G.; Bergman, D. A.; Brinkworth, R. I.;
Wickramasinghe, W.; Begun, J.; Martine, J. L.; Fairlie, D. P. J. Am. Chem.
Soc. 1996, 118, 3375-3379.
(22) Burton, P. S.; Conradi, R. A.; Ho, N. F. H.; Hilgers, A. R.; Borchardt, R.
T. J. Pharm. Sci. 1996, 85, 1336-1340.
(23) Khan, A. R.; Parrish, J. C.; Fraser, M. E.; Smith, W. W.; Bartlett, P. A.;
James, M. N. Biochemistry 1998, 37, 16839-16845.
(24) Timmerman, P.; Beld, J.; Puijk, W. C.; Meloen, R. H. Chembiochem 2005,
6, 821-824.
(25) Kiick, K. L.; Weberskirch, R.; Tirrell, D. A. FEBS Lett. 2001, 502, 25-30.
JA060966W
9
J. AM. CHEM. SOC. VOL. 128, NO. 22, 2006 7151