full papers
F. Sander et al.
architectures, and the disappearance of the azide bands in
the IR spectra are corroborating the successful interlinking
of the ethynyl functionalized particles by “click chemistry”.
The UV–vis spectra further support the formation of triazole
linkers and corroborate the stability and homogeneity of the
ligand coated gold nano-particles under the applied reaction
conditions.
[6] I. Willner, B. Willner, Nano Lett. 2010, 10, 3805–3815.
[
[
7] R. D. Powell, J. F. Hainfeld, Micron 2011, 42, 163–174.
8] J. I. Cutler, E. Auyeung, C. A. Mirkin, J. Am. Chem. Soc. 2012, 134,
376–1391.
9] L. Dykman, N. Khlebtsov, Chem. Soc. Rev. 2012, 41, 2256.
1
[
[
10] F. Westerlund, T. Bjørnholm, Curr. Opin. Colloid Interface Sci.
009, 14, 126–134.
[11] K. J. M. Bishop, C. E. Wilmer, S. Soh, B. A. Grzybowski, Small
009, 5, 1600–1630.
12] C. L. Choi, A. P. Alivisatos, Annu. Rev. Phys. Chem. 2010, 61,
69–389.
13] M. Grzelczak, J. Vermant, E. M. Furst, L. M. Liz-Marzán, ACS Nano
010, 4, 3591–3605.
2
2
[
[
3
5
. Conclusion
2
The formation of Au NPs into defined organic/inorganic
hybrid nanoarchitectures in means of quantity and spatial
arrangement utilizing a wet click chemistry protocol is suc-
cessfully demonstrated with mono acetylene functional-
ized Au NPs. A series of azide linker molecules was used to
[
[
14] K. Naka, H. Itoh, Y. Chujo, Langmuir 2003, 19, 5496–5501.
15] C. R. van den Brom, P. Rudolf, T. T. M. Palstra, B. Hessen, Chem.
Commun. 2007, 4922.
[
16] H. Ozawa, M. Kawao, H. Tanaka, T. Ogawa, Langmuir 2007, 23,
6365–6371.
build up dimer, trimer and tetramer structures reflecting the [17] C.-P. Chak, S. Xuan, P. M. Mendes, J. C. Yu, C. H. K. Cheng, K. C.-F.
Leung, ACS Nano 2009, 3, 2129–2138.
18] K. Naka, H. Itoh, Y. Chujo, Langmuir 2003, 19, 5496–5501.
19] H. Ozawa, M. Kawao, H. Tanaka, T. Ogawa, Langmuir 2007, 23,
linker’s geometry. Our current attempts are geared towards
[
[
optimizing the reactive sites for the Huisgen 1,3-dipolar
cycloaddition in order to improve the efficiency of the cou-
pling reaction. We are searching also for ligand structures
providing larger monofunctionalized metallic particles dis-
playing plasmon resonance bands which are of interest for a
6
365–6371.
[
20] R K. la jn , M .A . Olson , .P J. Wesson , L. Fa ng , A. Coskun , A. Tr abolsi ,
S. Soh, J. F. Stoddart, B. A. Grzybowski, Nat. Chem. 2009, 1,
733–738.
variety of optical experiments and devises. Finally strategies [21] M. A. Olson, A. Coskun, R. Klajn, L. Fang, S. K. Dey, K. P. Browne,
B. A. Grzybowski, J. F. Stoddart, Nano Lett. 2009, 9, 3185–3190.
to improve the stability of the particles are very appealing as
the diversity of applicable reactions scales with the stability
of the reacting species.
[
22] M. A. Olson, A. Coskun, R. Klajn, L. Fang, S. K. Dey, K. P. Browne,
B. A. Grzybowski, J. F. Stoddart, Nano Lett. 2009, 9, 3185–3190.
23] Q. Zeng, R. Marthi, A. McNally, C. Dickinson, T. E. Keyes, R. J. For-
ster, Langmuir 2010, 26, 1325–1333.
[
The proof of concept to use Au NPs as artificial molecules
engaged in click reactions is appealing for numerous applica- [24] A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth,
tions ranging from labels to functional units in electronic and
optical devises. The future success of the approach however
will depend strongly on the nature, variety, and quality of
available particles.
M. P. Bruchez, P. G. Schultz, Nature 1996, 382, 609–611.
25] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature
[
[
[
[
[
[
[
[
[
[
1
996, 382, 607–609.
26] Z. Deng, Y. Tian, S.-H. Lee, A. E. Ribbe, C. Mao, Angew. Chem., Int.
Ed. 2005, 44, 3582–3585.
27] F. A. Aldaye, H. F. Sleiman, Angew. Chem., Int. Ed. 2006, 45,
2
204–2209.
28] F. Huo, A. K. R. Lytton-Jean, C. A. Mirkin, Adv. Mater. 2006, 18,
304–2306.
29] S. E. Stanca, R. Eritja, D. Fitzmaurice, Faraday Discuss. 2006,
31, 155.
2
Supporting Information
Supporting Information is available from the Wiley Online Library
1
30] J. H. Lee, D. P. Wernette, M. V. Yigit, J. Liu, Z. Wang, Y. Lu, Angew.
Chem., Int. Ed. 2007, 46, 9006–9010.
31] M. Fischler, A. Sologubenko, J. Mayer, G. Clever, G. Burley,
J. Gierlich, T. Carell, U. Simon, Chem. Commun. 2008, 169.
32] M. H. S. Shyr, D. P. Wernette, P. Wiltzius, Y. Lu, P. V. Braun, J. Am.
Chem. Soc. 2008, 130, 8234–8240.
33] M. H. S. Shyr, D. P. Wernette, P. Wiltzius, Y. Lu, P. V. Braun, J. Am.
Chem. Soc. 2008, 130, 8234–8240.
34] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew.
Chem. Int. Ed. 2002, 41, 2596–2599.
or from the author.
Acknowledgements
We are grateful to the University of Basel and the Karlsruhe Insti-
tute of Technology for ongoing support. Financial support by the
EU through the project FUNMOL (no. 213382 of the call FP7-NMP-
[
35] . YZ hou ,S.Wang , K.Zhang , X. J ia ng ,A ngew. Chem., Int. Ed. 2008,
2
007-SMALL-1), the Swiss National Science Foundation (SNF), the
4
7, 7454–7456.
Swiss Nanoscience Institute (SNI) and the National Research Pro-
gram 62 “smart materials” is gratefully acknowledged.
[
[
36] X. Xu, W. L. Daniel, W. Wei, C. A. Mirkin, Small 2010, 6, 623–626.
37] C. Hua, W. H. Zhang, A. De, S. Ciampi, D. Gloria, G. Liu,
J. B. Harper, J. J. Gooding, Analyst 2012, 137, 82–86.
[
[
[
[
38] Z. Lin, S. Gao, J. Lin, W. Lin, S. Qiu, L. Guo, B. Qiu, G. Chen, Anal.
Methods 2012, 4, 612–615.
39] M.-X. Zhang, B.-H. Huang, X.-Y. Sun, D.-W. Pang, Langmuir 2010,
[
[
1] A. Corma, H. Garcia, Chem. Soc. Rev. 2008, 37, 2096–2126.
2] C. Della Pina, E. Falletta, L. Prati, M. Rossi, Chem. Soc. Rev. 2008,
2
6, 10171–10176.
3
7, 2077–2095.
40] K. Zhu, Y. Zhang, S. He, W. Chen, J. Shen, Z. Wang, X. Jiang, Anal.
Chem. 2012, 84, 4267–4270.
41] A. Kimoto, K. Iwasaki, J. Abe, Photochem. Photobiol. Sci. 2010, 9,
[
[
3] X. Zhang, Q. Guo, D. Cui, Sensors 2009, 9, 1033–1053.
4] M. Homberger, U. Simon, Phil. Trans. R. Soc. A 2010, 368,
1
405–1453.
1
52–156.
[
5] G. Schmid, Chem. Soc. Rev. 2008, 37, 1909–1930.
1
0
www.small-journal.com
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
small 2012,
DOI: 10.1002/smll.201300839