56
Vol. 59, No. 1
Table 2. 1H- and 13C-NMR Spectral Dataa) for Sugar Parts of Compounds 2 and 3
2
3
C
H
C
H
xyl-1
102.3
75.2
78.9
71.3
67.6
4.83 (d, 7.7)
xyl-1
98.2
79.2
76.9
71.6
67.4
5.05 (d, 7.3)
2
3
4
5
4.00—4.02 (m)
4.17—4.19 (m)
4.22—4.24 (m)
3.77 (dd, 10.6, 10.7)
4.41—4.43 (m)
2
3
4
5
4.18—20 (m)
4.25—27 (m)
4.12—4.14 (m)
3.66 (dd, 10.1, 11.2)
4.34 (dd, 5.2, 11.2)
6.57 (s)
4.77—4.79 (m)
4.73—4.75 (m)
4.21—4.23 (m)
4.73 (m)
Rha-1
101.9
72.2
72.0
74.5
69.9
18.8
2
3
4
5
6
1.73 (d, 6.1)
a) Measured in 500 Hz for 1H, and 125 Hz for 13C, in C5D5N; coupling constants (J) in Hz are given in parentheses.
CHCl3/MeOH, 10 : 0—6 : 1, 18 g) was subjected to column chromatography
gram of Promoting Development for Guizhou and Xibuzhiguang from CAS,
over silica gel (200 g) eluting with CHCl3/MeOH to afford four fractions. Foundation of Key State Lab. of Phytochemistry and Plant Resources in
Fraction 3.3 (elution of CHCl3/MeOH, 9 : 1—7 : 1, 4 g) was chromatograph-
ed over silica gel eluting with CHCl3/MeOH (8 : 1) and further purified by
RP-18 (60% MeOH/H2O) and sephadex LH-20 (MeOH) to obtain 3 (280 mg).
West China (P2008ZZ05), and Knowledge Innovation Programs of the Chi-
nese Academy of Sciences (CAS) (Grant No. KSCX2-YW-G-038, KSCX2-
YW-R-194, 29KZCX2-XB2-15-03).
Reineckiagenin A (1): C27H44O5, white amorphous solid, [a]D20 ꢂ10.4°
References
KBr
(cꢁ0.11, CHCl3), IR n
(cmꢀ1): 3373, 2925, 1057, 977, 948, 918, 898,
max
1) Tsukamoto Y., “The Grand Dictionary of Horticulture,” Shogakukan,
822, intensity 918ꢃ898. Negative-ion FAB-MS m/z: 447 [MꢀH]ꢀ. Nega-
tive-ion HR-FAB-MS m/z 447.3124 [MꢀH]ꢀ, calculated: 447.3110. For the
1H- and 13C-NMR spectral data (see Table 1).
Tokyo, 1988, p. 36.
2) Zhang P., Lian F. Q., Zhu M. Y., Xiong M. L., Journal of Jiangxi Agri-
cultural University, 26, 941—943 (2004).
3) National Administration of Traditional Chinese Medicine, “Dictionary
of Traditional Chinese Medicine,” Shanghai Science and Technology
Publishing House, Shanghai, 1999, pp. 7204—7205.
4) Lu K. M., “Collection of the Drugs in Miao Minority,” Guizhou Peo-
ple’s Publishing House, Guizhou, 1987, pp. 44.
5) Kimura M., Tohma M., Yoshizawa I., Akiyama H., Chem. Pharm.
Bull., 16, 25—33 (1968).
6) Hirai Y., Konishi T., Sanada S., Chem. Pharm. Bull., 30, 3476—3483
(1982).
7) Konishi T., Kiyosawa S., Shoji J., Chem. Pharm. Bull., 32, 1451—
1466 (1984).
8) Yang Q. X., Zhang Y. J., Li H. Z., Yang C. R., Steroids, 70, 732—737
(2005).
9) Kiyoshi I., Tenji K., Shiu K., Yakugaku Zasshi, 107, 140—149 (1987).
10) Takeda K., Okanishi T., Shimaoka A., Yakugaku Zasshi, 75: 560—562
(1955).
Reineckiagenoside A (2): C32H52O9, white amorphous solid. [a]D20 ꢀ3.7°
KBr
max
(cꢁ0.11, MeOH), IR n
(cmꢀ1): 3400, 2926, 1454, 1046, 985, 916, 899,
863, intensity 916ꢃ899. Negative-ion FAB-MS m/z: 579 [MꢀH]ꢀ, 447
[Mꢀ132ꢀH]ꢀ. Negative-ion HR-FAB-MS m/z: 579.3542 [MꢀH]ꢀ, calcu-
lated: 579.3533. For the 1H- and 13C-NMR spectral data (see Tables 1, 2).
Reineckiagenoside B (3): C38H62O13, colorless needles, crystallized from
chloroform/methanol/water (7 : 3 : 0.1), [a]D20 ꢀ9.9° (cꢁ0.14, MeOH), IR
KBr
max
n
(cmꢀ1): 3400, 2930, 1450, 1040, 980, 910, 894, 860, intensity
910ꢃ894. Negative-ion FAB-MS m/z: 725 [MꢀH]ꢀ, 579 [Mꢀ147ꢀH]ꢀ,
447 [Mꢀ147ꢀ132ꢀH]ꢀ. HR-FAB-MS m/z 725.4136 [MꢀH]ꢀ, calculated:
725.4112. For the 1H- and 13C-NMR spectral data (see Tables 1, 2).
Acid Hydrolysis of
2
A solution of 2 (12 mg) in 1 M HCl
(dioxane/water, 1 : 1, 6 ml) was heated at 90 °C for 2 h, the reaction mixture
was diluted with 2 ml H2O and extracted with CHCl3 (5 mlꢄ3), the CHCl3
phase (8.6 mg) was subjected to CC over silica gel eluting with
CHCl3/MeOH (100 : 1 v/v) to give 1 (3.6 mg, identified by TLC comparison
11) Sasaki K., Chem. Pharm. Bull., 9, 684—692 (1961).
12) Takeda K., Okanishi T., Minato H., Shimaoka A., Tetrahedron, 19,
759—772 (1963).
13) Kanmoto T., Mimaki Y., Sashida Y., Nikadido T., Koike K., Ohmoto
T., Chem. Pharm. Bull., 42, 926—931 (1994).
1
and further confirmed by H- and 13C-NMR spectrum). The aqueous layer
was passed through an Amberlite IRA-401 (OHꢀ form) column and the elu-
ate was concentrated to dryness to give D-xylose, which was detected by di-
rect TLC analysis on a HPTLC silica gel 50000 F254 plate using n-
BuOH–Me2CO–H2O (4 : 5 : 1, homogenous) as development and anisalde-
hyde-H2SO4 as detection, comparing with the authentic sample: xylose (Rf
0.58). The absolute configuration of monosaccharide was further determined
by GC analysis of its derivatives to be D-xylose. A solution of the sugar
residue (2.5 mg) in pyridine (2 ml) was added to L-cysteine methyl ester hy-
drochloride (3.3 mg) and kept at 60 °C for 1 h. Then trimethylsilylimidazole
(0.5 ml) was slowly added to the reaction mixture and kept again at 60 °C for
30 min. The supernatant (4 ml) was analyzed by GC, and the retention time
of D- and L-xylose were 13.35 and 14.01 min, respectively.
14) Zhang Z. Q., Chen J. C., Zhang X. M., Li Z. R., Qiu M. H., Helv.
Chim. Acta, 91, 1494—1499 (2008).
15) Eddy C. R., Wall M. E., Scott M. K., Anal. Chem., 25, 266—271
(1953).
16) Jones R. N., Katzenellenbogen K., Dobriner K., J. Am. Chem. Soc., 75,
158—166 (1953).
17) Agrawal P. K., Jain D. C., Gupta R. K., Thakur R. S., Phytochemistry,
24, 2479—2496 (1985).
18) Tori K., Seo S., Terui Y., Nishikawa J., Yashuda F., Tetrahedron Lett.,
22, 2405—2408 (1981).
Acid Hydrolysis of 3 A solution of 3 (22 mg) in 1 M HCl (dioxane/
water, 1 : 1, 12 ml) was heated at 90 °C for 1 h, the reaction mixture was di-
luted with 5 ml H2O and extracted with AcOEt (10 mlꢄ3), the AcOEt phase
(18 mg) was subjected to CC over silica gel eluting with CHCl3/MeOH
(100 : 1—15 : 1) to give 1 and 2 [1 (5.6 mg), 2 (6.8 mg), identified by TLC
comparison and further confirmed by 1H- and 13C-NMR spectrum]. The
aqueous layer was treated and analyzed as described for 2, in which D-xylose
and L-rhamnose was detected by HPTLC (Development solvent: n-
BuOH/Me2CO/H2O, 4 : 5 : 1, D-xylose Rf 0.58, L-rhamnose Rf 0.67), and GC
analysis (retention times for D- and L-xylose, and L-rhamnose were 13.35,
14.01, and 14.97 min, respectively).
19) Marquardt F. H., Chem. Ind. (London), 1978, 94—95 (1978).
20) Hara S., Okabe H., Mihashi K., Chem. Pharm. Bull., 35, 501—506
(1987).
21) Lemieux R. U., Stevens J. D., Can. J. Chem., 44, 249—262 (1966).
22) Gorin P. A. J., Mazurek M., Can. J. Chem., 53, 1212—1223 (1975).
23) Agrawal P. K., Phytochemistry, 31, 3307—3330 (1966).
24) Shimomura H., Sashoda Y., Mimaki Y., Phytochemistry, 28, 3163—
3170 (1989).
25) Chen C. X., Zhou J., Acta Bot. Yunnanica, 6, 111—117 (1984).
26) Miyahara K., Kudo K., Kawasaki T., Chem. Pharm. Bull., 31, 348—
351 (1983).
27) Partil A. D., Baures P. W., Eggleaton D. S., Faucette L., Hemling M.
E., Westley J. W., Johnson P. K., J. Nat. Prod., 56, 1451—1458 (1993).
Acknowledgements The project was financially supported by the Pro-