M. Desroses et al. / Tetrahedron Letters 52 (2011) 4417–4420
4419
Table 3
Synthesis of indole derivatives from 2a and various arylhydrazines
O
P
Pr
O
P
Pr
O
P
Pr
O
HO
O
O
OH
H
N
T3P® (1 equiv)
EtOAc, MW
NH2
R
+
R
N
H
0
00
Figure 1. The structure of P,P ,P -tripropyl triphosphonic acid.
1
1
0
b-i
equiv
.55 mmol
2a
3n-u
1 equiv
0.55 mmol
In summary, we have developed a rapid, mild, and high yielding
Ò
protocol for the indolization of arylhydrazines with T3P under
Entry
1
Hydrazine
R=
Product
T (°C)
Time (min)
Yield (%)
82
microwave irradiation. One significant feature of this procedure
is the ease of product purification. Pure products could generally
be obtained after evaporation and filtration through a plug of silica.
This method provides a valuable alternative to the strongly acidic
or toxic reagents commonly employed for this transformation. Fur-
ther studies investigating the use of T3PÒ in the synthesis of other
heterocycles are currently underway in our laboratory.
MeO
4-OMe
110
10
N
H
1b
3
n
Me
4-Me
2
110
10
84
N
1c
H
Acknowledgment
3
o
Br
We gratefully acknowledge the financial support from the Knut
and Alice Wallenberg’s Foundation.
4
-Br
3
4
5
110
110
130
10
10
10
98
94
86
N
1d
H
3
p
Supplementary data
F
4-F
1
N
Supplementary data (experimental details and H NMR spectra
1e
H
3
q
F3C
4-CF
3
N
H
References and notes
1f
3
r
1
.
.
(a) Wissmann, H.; Kleiner, H.-J. Angew. Chem., Int. Ed. Engl. 1980, 19, 133; (b)
Escher, R.; Bünning, P. Angew. Chem., Int. Ed. Engl. 1986, 25, 277.
Cl
Ò
2
N
H
3. (a) Meudt, A.; Scherer, S.; Nerdinger S. PCT Int. Appl. WO 2005070879, 2005;
Chem. Abstr. 2005, 143, 172649.; (b) Augustine, J. K.; Atta, R. N.; Ramappa, B. K.;
Boodappa, C. Synlett 2009, 3378.
3
-Cl
87a
6
110
10
1g
N
H
4. 4. Meudt A., Scherer S., Böhm C. PCT Int. Appl. WO 2005123632, 2005; Chem.
Abstr. 2005, 144, 69544.
Cl
3
s
5.
(a) Appendino, G.; Minassi, A.; Berton, L.; Moriello, A. S.; Cascio, M. G.; De
Petrocellis, L.; Di Marzo, V. J. Med. Chem. 2006, 46, 2333; (b) Scaravelli, F.;
Bacchi, S.; Massari, L.; Curcuruto, O.; Westerduin, P.; Maton, W. Tetrahedron
Lett. 2010, 51, 5154.
2
-Cl
7
8
N
110
110
10
15
92
76
1h
H
6.
Meudt, A.; Scherer, S.; Böhm, C. PCT Int. Appl. WO 2005102978, 2005; Chem.
Abstr. 2005, 143, 440908.
Cl
3
t
7
8
.
.
Wedel, M.; Walter, A.; Montforts, F.-P. Eur. J. Org. Chem. 2001, 9, 1681.
8. Hermann, S. Ger. Offen. DE 10063493, 2002; Chem. Abstr. 2002, 137, 47003.
2
1
-Me
i
9. Burkhart, F.; Hoffmann, M.; Kessler, H. Angew. Chem., Int. Ed. 1997, 36, 1191.
10. Basavaprabhu, N. N.; Lamani, R. S.; Sureshbabu, V. V. Tetrahedron Lett. 2010, 51,
3002.
N
H
Me
3u
1
1. Vasantha, B.; Hemantha, H. P.; Sureshbabu, V. V. Synthesis 2010, 2990.
12. Augustine, J. K.; Kumar, R.; Bombrun, A.; Mandal, A. B. Tetrahedron Lett. 2011,
2, 1074.
3. Zumpe, F. L.; Melanie, F.; Schmitz, K.; Lender, A. Tetrahedron Lett. 2007, 48,
421.
4. Crawforth, J. M.; Paoletti, M. Tetrahedron Lett. 2009, 50, 4916.
a
Reaction produced a 4:3 mixture of regioisomers.
5
1
1
1
methyl 2-ketobutyrate (2l) and the reaction of 3-phenylpropional-
dehyde (2m) with phenylhydrazine furnished the expected C-3
substituted indole 3m in good yield (entry 13). Finally, the reaction
was carried out successfully on a 5 mmol scale, producing 3a in
15. Augustine, J. K.; Vairaperumal, V.; Narasimhan, S.; Alagarsamy, P.;
Radhakrishnan, A. Tetrahedron 2009, 65, 9989.
1
6. For a review, see: Sharma, V.; Kumar, P.; Pathak, D. J. Heterocycl. Chem. 2010,
7, 491.
17. For recent reviews, see: (a) Patil, S. A.; Patil, R.; Miller, D. D. Curr. Med. Chem.
011, 18, 615; (b) Barluenga, J.; Rodriguez, F.; Fananas, F. J. Chem Asian J. 2009,
, 1036; (c) Krueger, K.; Tillack, A.; Beller, M. Adv. Synth. Catal. 2008, 350, 2153;
d) Song, J. J.; Reeves, J. T.; Gallou, F.; Tan, Z.; Yee, N. K.; Senanayake, C. H. Chem.
Soc. Rev. 2007, 36, 1120; (e) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106,
875; (f) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873; (g) Joule, J. A. In
4
9
8% yield.
2
4
(
To extend further the scope of this methodology, a set of substi-
tuted arylhydrazines was investigated and the results obtained are
summarized in Table 3. Hydrazines bearing electron-donating (en-
tries 1 and 2) or electron-withdrawing groups (entries 3–6) were
well tolerated affording good to excellent yields of the correspond-
ing tetrahydrocarbazoles. Furthermore, ortho-substituted hydra-
zines also performed well (entries 7 and 8) indicating a limited
influence of steric factors on the reaction outcome.
2
Science of synthesis; Thomas, E. J., Ed.; Thieme: Stuttgart, 2000. Vol. 10, p 366.
8. For recent examples, see: (a) Inman, M.; Moody, C. Chem. Commun. 2011, 47,
788; (b) Ashcroft, C. P.; Hellier, P.; Pettman, A.; Watkinson, S. Org. Process Res.
Dev. 2011, 15, 98; (c) Wahab, B.; Ellames, G.; Passey, S.; Watts, P. Tetrahedron
1
2010, 66, 3861; (d) Jiang, H.; Wang, Y.; Wan, W.; Hao, J. Tetrahedron 2010, 66,
2746; (e) Xu, D.-Q.; Wu, J.; Luo, S.-P.; Zhang, J.-X.; Wu, J.-Y.; Du, X.-H.; Xu, Z.-Y.
We believe that T3PÒ mediates the Fischer indolization by first
acting as a water scavenger and driving the initial equilibrium to-
ward formation of the phenylhydrazone intermediate. This process
produces P,P ,P -tripropyl triphosphonic acid (Fig. 1), which then
functions as a proton source to promote ring-closure.
Green Chem. 2009, 11, 1239; (f) Park, I.-K.; Suh, S.-E.; Lim, B.-Y.; Cho, C.-G. Org.
Lett. 2009, 11, 5454; (g) Jeanty, M.; Blu, J.; Suzenet, F.; Guillaumet, G. Org. Lett.
2
009, 11, 5142; (h) Donald, J. R.; Taylor, R. J. K. Synlett 2009, 59; (i) Sudhakara,
A.; Jayadevappa, H.; Mahadevan, K. M.; Hulikal, V. Synth. Commun. 2009, 39,
506; (j) Sudhakara, A.; Jayadevappa, H.; Kumar, H. N. H.; Mahadevan, K. M.
Lett. Org. Chem. 2009, 2, 159; (k) Varma, P. P.; Sherigara, B. S.; Mahadevan, K.
0
00
2