Ple aDs ea l dt oo nn To rt a and sj ua sc tt imo na sr gins
Page 8 of 10
ARTICLE
Journal Name
substituent effect of the starting materials (Scheme 4).
Halogen substituted aldehydes with electron-withdrawing
abilities were efficiently reduced to the corresponding alcohols
in good to excellent yields with no dehalogenation. Methyl,
methoxy, dimethylamino, nitrile and acid functionalities
remain unaffected during the reduction of the corresponding
aldehydes (Table 3, entries 4–8). There is no significant
change upon changing the electron-donating or withdrawing
substituents. The carbonyl reduction results are summarized
K. Oniwa, S. Hirokawa, Y. Miura, O. Matsushita, N. Kobayashi,
DOI: 10.1039/C5DT03256C
Chem. Comm., 2012, 48, 3851; (d) J. Mack, L. Sosa-Vargas, S.
J. Coles, G. J. Tizzard, I. Chambrier, A. N. Cammidge, M. J.
Cook, N. Kobayashi, Inorg. Chem., 2012, 51, 12820.
Y. Rio, M. S. Rodriguez-Morgade, T. Torres, Org. Biomol.
Chem., 2008, 6, 1877-1894.
8
9
(a) E. F. Bradbrook, R. P. Linstead, J. Chem. Soc. 1936, 1739;
b) S. A. Mikhalenko, E. A. Lukuyanets, J. Gen. Chem. USSR,
969, 39, 2495.
0 W. Freyer, L. Q. Minh, Monatsh. Chem., 1986, 117, 475-489.
(
1
1
in the Table 3, and the isolated compounds were compared 11 M. Kidwai, P. Motshra, R. Mohan, S. Biswas, Bioorg. Med.
Chem. Lett., 2005, 15, 915; (b) M. Kidwai, S. Saxena, R.
Mohan, R. Venkataramanan, J. Chem. Soc. Perkin Trans.,
with standard sample by GC-MS analysis.
2
002,
2 (a) W. S. Knowles, Angew. Chem. Int. Ed., 2002, 41, 1998; (b)
C, Wang, X. Wu, J. Xiao, Chem. Asian. J., 2008, , 1750.
3 (a) R. Noyori, T. Ohkuma, Angew. Chem. Int. Ed., 2001, 40, 40;
b) S. Chakraborty, H. Guan, Dalton Trans., 2010, 39, 7427.
1, 1845.
1
1
Conclusions
3
A lipophilic and electron-rich phthalocyanine (α,α’-n-
OC H ) -H Pc and its nickel(II) complex (α,α’-n-OC H ) -
5 11 8 2 5 11 8
(
1
1
4 G. W. Kabalka, R. R. Malladi, Chem. Commun. 2000, 22, 2191.
5 (a) M. M. Wang, L. He, Y. M. Liu, Y. Cao, H. Y. He, K. N. Fan,
Green Chem., 2011, 13, 602; (b) F. Z. Su, L. He, J. Ni, Y. Cao, H.
Y. He, K. N. Fan, Chem. Commun., 2008, 30, 3531; c) L. He, F.
J. Yu, X. B. Lou, Y. Cao, H. Y. He, K. N. Fan, Chem. Commun.
Ni(II)Pc have been synthesized and characterized. The
electronic structures have been studied using optical
spectroscopy including the UV-visible absorption and MCD
techniques, electrochemistry including the use of CV and DPV,
spectroelectrochemistry, and TD-DFT calculations. A series of
experiments clearly demonstrate that the (α,α’-n-OC H ) -
5 11 8
Ni(II)Pc complex can be used as a catalyst to carry out highly
efficient carbonyl reductions.
2
010, 46, 1553; d) L. He, J. Ni, L. C. Wang, F. J. Yu, Y. Cao Y, H.
Y. He, K. N. Fan, Chem. Eur. J., 2009, 15, 11833.
6 T. Jimenez, E. Barea, J. E. Oltra, J. M. Cuerva, J. Justicia, J. Org.
Chem., 2010, 75, 7022.
1
17 a) T, Irrgang, D, Friedrich, R, Kempe, Angew. Chem. Int. Ed.
011, 50, 2183; b) E. L. Roux, R. Malacea, E. Manoury, R. Poli,
2
L. Gonsalvi, M. Peruzzini, Adv. Synth. Catal. 2007, 349, 309; (c)
S. M. Lu, C. Bolm, Angew. Chem. Int. Ed., 2008, 47, 8920; (d)
X. Wu, X. Li, A. Z. Gerosa, A. Pettman, J. Liu, A. J. Mills, J. Xiao,
Chem. Eur. J., 2008, 14, 2209.
Acknowledgements
Financial support was provided by the NSFC of China (No.
1
1
8 K, Balazsik, K. Szori, G. Szollosi, M. Bartok, Chem. Commun.,
2
1171076) to WZ and an NRF of South Africa CSUR grant
2
011, 47, 1551.
(93627) to JM. The theoretical calculations were carried out at
9 (a) X. C. Cambeiroa, M. A. Pericas, Adv. Synth. Catal., 2011,
53, 113; (b) K. Everaere, A. Mortreux, J. F. Carpentier, Adv.
the Centre for High Performance Computing in Cape Town.
3
Synth. Catal., 2003, 345, 67; (c) A. Z. Gerosa, W. Hems, M.
Groarke, F. Hancock, Platinum Metals Rev., 2005, 49, 158; (d)
M. L. Kantam, B. P. C. Rao, B. M. Choudary, B. Sreedhar, Adv.
Synth. Catal., 2006, 348, 1970; (e) S. Enthaler, B. Hagemann,
S. Bhor, G. A. Kumar, M. K. Tse, B. Bitterlich, K. Junge, G. Erre,
M. Beller, Adv. Synth. Catal., 2007, 349, 853; (f) M. L.
Kantam, R. S. Reddy, U. Pal, B. Sreedhar, S. Bhargava, Adv.
Synth. Catal. 2008, 350, 2231; (g) J. Ito, S. Ujiie, H. Nishiyama,
Chem Commun., 2008, 16, 1923.
Notes and references
1
(a) J. Mack, N. Kobayashi, Chem. Rev., 2011, 111, 281; (b) C.
G. Claessens, U. Hahn, T. Torres, Chem. Rec., 2008, , 75-97.
(a) D. Wohrle, D. Meissner, Adv. Mater., 1991, , 129; (b) J.
Rostalki, D. Meissner, Sol. Energy Mater. Sol. Cells, 2000, 63
7; (c) R. Koeppe, N. S. Sariciftci, P. A. Troshin, R. N.
8
2
3
,
3
Lyubovskaya, Appl. Phys. Lett., 2005, 87, 244102.
2
2
0 (a) Y. Sun, G. Liu, H. Gu, T. Huang, Y. Zhang, H. Li, Chem
Commun., 2011, 47, 2583; b) K. Ahlford, M. J. Ekstrc, A. B.
Zaitsev, P. Ryberg, L. Eriksson, H. Adolfsson, Chem. Eur. J.,
3
(a) P. Turek, P. Petit, J. J. Andre, J. Simon, R. Even, B.
Boudjema, G. Guillaud, M. Maitrot, J. Am. Chem. Soc. 1987,
1
09, 5119; (b) J. Jiang, K. Kasuga, D. P. Arnold, In
2
009, 15, 11197; (c) A. N. Ajjou, J. L. Pinet, J. Mol. Catal. A
Supramolecular Photosensitive and Electroactive Materials
Nalwa, H. S., Ed.; Academic Press: New York, 2001; p 113; (c)
D. K. P. Ng, J. Jiang, Chem. Soc. Rev., 1997, 26, 433; (d) J.
Jiang, W. Liu, D. P. Arnold, J. Porphyrins Phthalocyanines,
Chem., 2004, 214, 20.
1 (a) W. Baratta, C. Barbato, S. Magnolia, K. Siega, P. Rigo,
Chem. Eur. J., 2010, 16, 3201; (b) W. Baratta, M. Ballico, A. D.
Zotto, K. Siega, S. Magnolia, P. Rigo, Chem. Eur. J., 2008, 14,
2
003, 7, 459; (e) Y. Chen, W. Su, M. Bai, J. Jiang, X. Li, Y. Liu, L.
2
557.
Wang, S. Wang, J. Am. Chem. Soc., 2005, 127, 15700.
2
2
2
2
2 V. K. Praveen, S. Upendra, K. Neeraj, B. Manju, K. Vishal
Kumar, S. Bikram, Catal. Lett., 2012, 142, 907.
4
(a) G. de la Torre, P. Vazquez, F. Agullo-Lopez, T. Torres,
Chem. Rev., 2004, 104, 3723; (b) Flom, S. R. In The Porphyrin
Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.;
Academic Press: New York, 2003; Vol. 19, pp 179-190.
E. Ben Hur, W. S Chan, In The Porphyrin Handbook; Kadish, K.
M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York,
3 N. Kobayashi, T. Furuyama, K. Satoh, J. Am. Chem. Soc., 2011,
1
33, 19642.
4 T. Fukuda, Y. Kikukawa, R. Tsuruya, A. Fuyuhiro, N. Ishikawa,
N. Kobayashi, Inorg. Chem., 2011, 50, 11832.
5
6
7
5 a) S. B. Piepho, P. N. Schatz, In Group Theory in Spectroscopy
with Applications to Magnetic Circular Dichroism, Wiley: New
York, 1983. b) J. Mack, M. J. Stillman, N. Kobayashi, Coord.
Chem. Rev. 2007, 251, 429.
6 Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
2
003; Vol. 19, pp 1-35.
M. M. Nicholson, In Phthalocyanine. Properties and
Applications; Lever, A. B. P., Leznoff, C. C., Eds.; VCH: New
York, 1993; Vol. 3, pp 71-118.
(a) R. P. Linstead, M. J. Whalley, J. Chem. Soc. 1952, 4839; (b)
S. Shimizu, Y. Haseba, M. Yamazaki, G. Kumazawa, N.
2
8
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2015
Please do not adjust margins