Modular Synthesis of pH-Sensitive Fluorescent Diaza[4]helicenes
[4] a) M. Weimar, R. Correa da Costa, F.-H. Lee, M. J. Fuchter,
Org. Lett. 2013, 15, 1706–1709; b) W. Lin, G.-L. Dou, M.-H.
Hu, C.-P. Cao, Z.-B. Huang, D.-Q. Shi, Org. Lett. 2013, 15,
1238–1241; c) E. Kaneko, Y. Matsumoto, K. Kamikawa, Chem.
Eur. J. 2013, 19, 11837–11841; d) D. Waghray, J. Zhang, J. Ja-
cobs, W. Nulens, N. Basaric´, L. V. Meervelt, W. Dehaen, J. Org.
Chem. 2012, 77, 10176–10183; e) H. R. Talele, S. Sahoo, A. V.
Bedekar, Org. Lett. 2012, 14, 3166–3169; f) H. Kelgtermans, L.
Dobrzanska, L. Van Meervelt, W. Dehaen, Org. Lett. 2012, 14,
1500–1503; g) O. Crespo, B. Eguillor, M. A. Esteruelas, I. Fer-
nandez, J. Garcia-Raboso, M. Gomez-Gallego, M. Martin-Or-
tiz, M. Olivan, M. A. Sierra, Chem. Commun. 2012, 48, 5328–
5330; h) M. R. Crittall, H. S. Rzepa, D. R. Carbery, Org. Lett.
2011, 13, 1250–1253; i) N. Takenaka, R. S. Sarangthem, B.
Captain, Angew. Chem. Int. Ed. 2008, 47, 9708–9710; Angew.
Chem. 2008, 120, 9854.
Optical Resolution of Neutral [4]Helical Quinacridine 1f: The two
enantiomers of racemic azahelicene 1f differed significantly in their
HPLC retention times on a Chiralcel IB column. Separation was
therefore possible under semi-preparative conditions using
a
1ϫ25 cm column. Racemic diazahelicene 1f (25 mg) was resolved
by repeated HPLC separation using an Agilent 1100 Series instru-
ment (hexane/2-propanol 6:4 + 0.1% ethanolamine, 0.6 mL/min
flow rate, and 1.5 mg injections of the racemate in 900 μL of elu-
ent). Evaporation of the solvents and trituration with diethyl ether
afforded (+)-1f (10 mg, Ͼ99% ee) and (–)-1f (8 mg, 99% ee) as
pink amorphous solids.
CCDC-1000626 (for 1e) contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
[5] a) F. Torricelli, J. Bosson, C. Besnard, M. Chekini, T. Bürgi, J.
Lacour, Angew. Chem. Int. Ed. 2013, 52, 1796–1800; Angew.
Chem. 2013, 125, 1840; b) Y. Si, G. Yang, J. Mater. Chem. C
2013, 1, 2354–2361; c) Y. Nakai, T. Mori, K. Sato, Y. Inoue, J.
Phys. Chem. A 2013, 117, 5082–5092; d) R. Adam, R. Balles-
teros-Garrido, O. Vallcorba, B. Abarca, R. Ballesteros, F. R.
Leroux, F. Colobert, J. M. Amigó, J. Rius, Tetrahedron Lett.
2013, 54, 4316–4319; e) H. R. Talele, A. V. Bedekar, Org. Bio-
mol. Chem. 2012, 10, 8579–8582; f) K. Goto, R. Yamaguchi,
S. Hiroto, H. Ueno, T. Kawai, H. Shinokubo, Angew. Chem.
Int. Ed. 2012, 51, 10333–10336; Angew. Chem. 2012, 124,
10479; g) J. Elm, J. Lykkebo, T. J. Sørensen, B. W. Laursen,
K. V. Mikkelsen, J. Phys. Chem. A 2012, 116, 8744–8752; h) T.
Caronna, F. Castiglione, A. Famulari, F. Fontana, L. Malpezzi,
A. Mele, D. Mendola, I. N. Sora, Molecules 2012, 17, 463–479;
i) D. G. D. a. I. A. Florea Dumitrascu, ARKIVOC 2010, i, 1–
32; j) T. Caronna, F. Fontana, A. Mele, I. N. Sora, W. Panzeri,
L. Vigano, Synthesis 2008, 413–416; k) J. Roithová, D.
Schröder, J. Mísˇek, I. G. Stará, I. Starý, J. Mass Spectrom.
2007, 42, 1233–1237; l) V. Claudio, L. Benoît, M. Pierre, L.
Jérôme, Chirality 2007, 19, 601–606; m) K. Shiraishi, A. Rajca,
M. Pink, S. Rajca, J. Am. Chem. Soc. 2005, 127, 9312–9313; n)
M. Watanabe, H. Suzuki, Y. Tanaka, T. Ishida, T. Oshikawa,
A. Tori-i, J. Org. Chem. 2004, 69, 7794–7801; o) D. Bas, P.-Y.
Morgantini, J. Weber, T. A. Wesolowski, Chimia 2003, 57, 173–
174; p) S. Honzawa, H. Okubo, S. Anzai, M. Yamaguchi, K.
Tsumoto, I. Kumagai, Bioorg. Med. Chem. 2002, 10, 3213–
3218; q) K. Tanaka, Y. Kitahara, H. Suzuki, H. Osuga, Y. Ka-
wai, Tetrahedron Lett. 1996, 37, 5925–5928; r) R. H. Martin,
M. Deblecker, Tetrahedron Lett. 1969, 10, 3597–3598; s) H. A.
Staab, M. A. Zirnstein, C. Krieger, Angew. Chem. Int. Ed. Engl.
1989, 28, 86–88; Angew. Chem. 1989, 101, 73; t) H. A. Staab,
M. Diehm, C. Krieger, Tetrahedron Lett. 1994, 35, 8357–8360;
u) K. Deshayes, R. D. Broene, I. Chao, C. B. Knobler, F. Died-
erich, J. Org. Chem. 1991, 56, 6787–6795.
Supporting Information (see footnote on the first page of this arti-
cle): General remarks and analysis conditions; synthesis and data;
1H NMR, 13C NMR, 19F NMR and HRMS-ESI spectra; X-ray
data for compound 1e; resolution, enantiomeric purity determi-
nation, ECD spectra; racemization barrier determination.
Acknowledgments
The authors thank the University of Geneva, the Swiss National
Science Foundation (grant numbers 200020-146666 and 20020-
147098). This research was also supported by the NCCR Chemical
Biology, funded by the Swiss National Science Foundation. The
contributions of the Sciences Mass Spectrometry (SMS) platform
at the Faculty of Sciences, University of Geneva, are also acknowl-
edged.
[1] a) Y. Shen, C.-F. Chen, Chem. Rev. 2012, 112, 1463–1535; b)
A. Urbano, Angew. Chem. Int. Ed. 2003, 42, 3986–3989; Angew.
Chem. 2003, 115, 4116; c) R. H. Martin, Angew. Chem. Int. Ed.
Engl. 1974, 13, 649–660; Angew. Chem. 1974, 86, 727.
[2] a) F. Aloui, R. E. Abed, A. Marinetti, B. B. Hassine, Tetrahe-
dron Lett. 2008, 49, 4092–4095; b) F. Aloui, R. E. Abed, B. B.
Hassine, Tetrahedron Lett. 2008, 49, 1455–1457; c) S. Abbate,
T. Caronna, A. Longo, A. Ruggirello, V. T. Liveri, J. Phys.
Chem. B 2007, 111, 4089–4097; d) S. Abbate, C. Bazzini, T.
Caronna, F. Fontana, C. Gambarotti, F. Gangemi, G. Longhi,
A. Mele, I. N. Sora, W. Panzeri, Tetrahedron 2006, 62, 139–
148; e) C. Bazzini, S. Brovelli, T. Caronna, C. Gambarotti, M.
Giannone, P. Macchi, F. Meinardi, A. Mele, W. Panzeri, F. Re-
cupero, A. Sironi, R. Tubino, Eur. J. Org. Chem. 2005, 1247–
1257; f) K. Sato, T. Yamagishi, S. Arai, J. Heterocycl. Chem.
2000, 37, 1009–1014; g) E. Murguly, R. McDonald, N. R.
Branda, Org. Lett. 2000, 2, 3169–3172; h) J. Howarth, J. Finne-
gan, Synth. Commun. 1997, 27, 3663–3668; i) S. Arai, M. Ishi-
kura, K. Sato, T. Yamagishi, J. Heterocycl. Chem. 1995, 32,
1081–1083; j) M. Rentzea, M. Diehm, H. A. Staab, Tetrahedron
Lett. 1994, 35, 8361–8364.
T. Kaseyama, S. Furumi, X. Zhang, K. Tanaka, M. Takeu-
[6] a)
chi, Angew. Chem. Int. Ed. 2011, 50, 3684–3687; Angew. Chem.
2011, 123, 3768; b) S. Graule, M. Rudolph, W. Shen, J. A. G.
Williams, C. Lescop, J. Autschbach, J. Crassous, R. Réau,
Chem. Eur. J. 2010, 16, 5976–6005; c) I. Alkorta, F. Blanco, J.
Elguero, D. Schroeder, Tetrahedron: Asymmetry 2010, 21, 962–
968; d) M. A. Shcherbina, X.-b. Zeng, T. Tadjiev, G. Ungar,
S. H. Eichhorn, K. E. S. Phillips, T. J. Katz, Angew. Chem. Int.
Ed. 2009, 48, 7837–7840; Angew. Chem. 2009, 121, 7977; e) S.
Graule, M. Rudolph, N. Vanthuyne, J. Autschbach, C. Roussel,
J. Crassous, R. Réau, J. Am. Chem. Soc. 2009, 131, 3183–3185;
f) W. Shen, S. Graule, J. Crassous, C. Lescop, H. Gornitzka,
R. Reau, Chem. Commun. 2008, 850–852; g) C. Bazzini, T. Ca-
ronna, F. Fontana, P. Macchi, A. Mele, I. N. Sora, W. Panzeri,
A. Sironi, New J. Chem. 2008, 32, 1710–1717; h) T. J. Katz,
Angew. Chem. Int. Ed. 2000, 39, 1921–1923; Angew. Chem.
2000, 112, 1997.
[3] a) A. Jancˇarˇík, J. Rybácˇek, K. Cocq, J. Vacek Chocholousˇová,
J. Vacek, R. Pohl, L. Bednárová, P. Fiedler, I. Císarˇová, I. G.
Stará, I. Starý, Angew. Chem. Int. Ed. 2013, 52, 9970–9975; b)
ˇ
J. Storch, J. Cermák, J. Karban, I. Císarˇová, J. Sýkora, J. Org.
Chem. 2010, 75, 3137–3140; c) O. Songis, J. Mísˇek, M. B.
ˇ
Schmid, A. Kollárovicˇ, I. G. Stará, D. Saman, I. Císarˇová, I.
Starý, J. Org. Chem. 2010, 75, 6889–6899; d) J. Misek, F. Teply,
I. G. Stara, M. Tichy, D. Saman, I. Cisarova, P. Vojtisek, I.
Stary, Angew. Chem. Int. Ed. 2008, 47, 3188–3191; Angew.
Chem. 2008, 120, 3232; e) I. G. Stará, I. Starý, A. Kollárovicˇ,
[7] a) L. Kötzner, M. J. Webber, A. Martínez, C. De Fusco, B. List,
Angew. Chem. Int. Ed. 2014, 53, 5202–5205; b) J. Chen, N.
Takenaka, Chem. Eur. J. 2009, 15, 7268–7276.
ˇ
F. Teplý, D. Saman, M. Tichý, J. Org. Chem. 1998, 63, 4046–
4050.
Eur. J. Org. Chem. 2014, 6431–6438
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6437