Page 9 of 11
Journal of the American Chemical Society
11. Mindiola, D. J.; Hillhouse, G. L., Terminal amido and imido
bis(imino)pyridine iron imides exhibiting spin crossover behav-
ior. J. Am. Chem. Soc. 2011, 133 (43), 17353-17369.
30. Cowley, R. E.; DeYonker, N. J.; Eckert, N. A.; Cundari, T. R.;
DeBeer, S.; Bill, E.; Ottenwaelder, X.; Flaschenriem, C.; Hol-
land, P. L., Three-coordinate terminal imidoiron(III) complexes:
structure, spectroscopy, and mechanism of formation. Inorg.
Chem. 2010, 49 (13), 6172-6187.
complexes of three-coordinate nickel. J. Am. Chem. Soc. 2001,
123 (19), 4623-4624.
12. Olivos Suarez, A. I.; Jiang, H.; Zhang, X. P.; de Bruin, B., The
radical mechanism of cobalt(II) porphyrin-catalyzed olefin
aziridination and the importance of cooperative H-bonding. Dal-
ton Trans. 2011, 40 (21), 5697-5705.
1
2
3
4
5
6
7
8
13. Kuijpers, P. F.; van der Vlugt, J. I.; Schneider, S.; de Bruin, B.,
Nitrene radical intermediates in catalytic synthesis. Chem. Eur.
J. 2017, 23 (56), 13819-13829.
14. Lyaskovskyy, V.; Suarez, A. I. O.; Lu, H.; Jiang, H.; Zhang, X.
P.; de Bruin, B., Mechanism of cobalt(II) porphyrin-catalyzed
C–H amination with organic azides: radical nature and H–atom
abstraction ability of the key cobalt(III)–nitrene intermediates. J.
Am. Chem. Soc. 2011, 133 (31), 12264-12273.
15. Suarez, A. I. O.; Lyaskovskyy, V.; Reek, J. N. H.; van der Vlugt,
J. I.; de Bruin, B., Complexes with nitrogen-centered radical lig-
ands: classification, spectroscopic features, reactivity, and cata-
lytic applications. Angew. Chem. Int. Ed. 2013, 52 (48), 12510-
12529.
16. Kuijpers, P. F.; Tiekink, M. J.; Breukelaar, W. B.; Broere, D. L.
J.; van Leest, N. P.; van der Vlugt, J. I.; Reek, J. N. H.; de Bruin,
B., Cobalt-porphyrin-catalysed intramolecular ring-closing C−H
amination of aliphatic azides: a nitrene-radical approach to satu-
rated heterocycles. Chem. Eur. J. 2017, 23 (33), 7945-7952.
17. Goswami, M.; Lyaskovskyy, V.; Domingos, S. R.; Buma, W. J.;
Woutersen, S.; Troeppner, O.; Ivanović-Burmazović, I.; Lu, H.;
Cui, X.; Zhang, X. P.; Reijerse, E. J.; DeBeer, S.; van Schoone-
veld, M. M.; Pfaff, F. F.; Ray, K.; de Bruin, B., Characterization
of porphyrin-Co(III)-‘nitrene radical’ species relevant in catalyt-
ic nitrene transfer reactions. J. Am. Chem. Soc. 2015, 137 (16),
5468-5479.
18. King, E. R.; Hennessy, E. T.; Betley, T. A., Catalytic C−H bond
amination from high-spin iron imido complexes. J. Am. Chem.
Soc. 2011, 133 (13), 4917-4923.
19. Wilding, M. J. T.; Iovan, D. A.; Wrobel, A. T.; Lukens, J. T.;
MacMillan, S. N.; Lancaster, K. M.; Betley, T. A., Direct com-
parison of C–H bond amination efficacy through manipulation
of nitrogen-valence centered redox: imido versus iminyl. J. Am.
Chem. Soc. 2017, 139 (41), 14757-14766.
20. Conradie, J.; Ghosh, A., Electronic structure of an iron-
porphyrin−nitrene complex. Inorg. Chem. 2010, 49 (1), 243-248.
21. Corona, T.; Ribas, L.; Rovira, M.; Farquhar, E. R.; Ribas, X.;
Ray, K.; Company, A., Characterization and reactivity studies of
a terminal copper–nitrene species. Angew. Chem. Int. Ed. 2016,
55 (45), 14005-14008.
31. Wang, L.; Hu, L.; Zhang, H.; Chen, H.; Deng, L., Three-
coordinate iron(IV) bisimido complexes with aminocarbene liga-
tion: synthesis, structure, and reactivity. J. Am. Chem. Soc. 2015,
137 (44), 14196-14207.
32. Wilding, M. J. T.; Iovan, D. A.; Betley, T. A., High-spin iron
imido complexes competent for C–H bond amination. J. Am.
Chem. Soc. 2017, 139 (34), 12043-12049.
33. Iovan, D. A.; Betley, T. A., Characterization of iron-imido spe-
cies relevant for N-group transfer chemistry. J. Am. Chem. Soc.
2016, 138 (6), 1983-1993.
34. Du, J.; Wang, L.; Xie, M.; Deng, L., A two-coordinate cobalt(II)
imido complex with NHC ligation: synthesis, structure, and re-
activity. Angew. Chem. Int. Ed. 2015, 54 (43), 12640-12644.
35. Liu, Y.; Du, J.; Deng, L., Synthesis, structure, and reactivity of
low-spin cobalt(II) imido complexes [(Me3P)3Co(NAr)]. Inorg.
Chem. 2017, 56 (14), 8278-8286.
36. King, E. R.; Sazama, G. T.; Betley, T. A., Co(III) imidos exhib-
iting spin crossover and C–H bond activation. J. Am. Chem. Soc.
2012, 134 (43), 17858-17861.
37. Baek, Y.; Betley, T. A., Catalytic C–H amination mediated by
dipyrrin cobalt imidos. J. Am. Chem. Soc. 2019, 141 (19), 7797-
7806.
38. Shay, D. T.; Yap, G. P. A.; Zakharov, L. N.; Rheingold, A. L.;
Theopold, K. H., Intramolecular C–H activation by an open-
shell cobalt(III) imido complex. Angew. Chem. Int. Ed. 2005, 44
(10), 1508-1510.
39. Hu, X.; Meyer, K., Terminal cobalt(III) imido complexes sup-
ported by tris(carbene) ligands:ꢀ imido insertion into the co-
balt−carbene bond. J. Am. Chem. Soc. 2004, 126 (50), 16322-
16323.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
40. Jones, C.; Schulten, C.; Rose, R. P.; Stasch, A.; Aldridge, S.;
Woodul, W. D.; Murray, K. S.; Moubaraki, B.; Brynda, M.; La
Macchia, G.; Gagliardi, L., Amidinato– and guanidinato–
cobalt(I) complexes: characterization of exceptionally short Co–
Co interactions. Angew. Chem. Int. Ed. 2009, 48 (40), 7406-
7410.
41. Dai, X.; Kapoor, P.; Warren, T. H., [Me2NN]Co(η6-toluene):ꢀ
O=O, N=N, and O=N bond cleavage provides β-diketiminato
cobalt μ-oxo and imido complexes. J. Am. Chem. Soc. 2004, 126
(15), 4798-4799.
42. Jenkins, D. M.; Betley, T. A.; Peters, J. C., Oxidative group
transfer to Co(I) affords a terminal Co(III) imido complex. J.
Am. Chem. Soc. 2002, 124 (38), 11238-11239.
43. Laskowski, C. A.; Miller, A. J. M.; Hillhouse, G. L.; Cundari, T.
R., A Two-coordinate nickel imido complex that effects C−H
amination. J. Am. Chem. Soc. 2011, 133 (4), 771-773.
44. Harrold, N. D.; Hillhouse, G. L., Strongly bent nickel imides
supported by a chelating bis(N-heterocyclic carbene) ligand.
Chem. Sci. 2013, 4 (10), 4011-4015.
45. Aguila, M. J. B.; Badiei, Y. M.; Warren, T. H., Mechanistic
insights into C–H amination via dicopper nitrenes. J. Am. Chem.
Soc. 2013, 135 (25), 9399-9406.
46. Bakhoda, A.; Jiang, Q.; Bertke, J. A.; Cundari, T. R.; Warren, T.
H., Elusive terminal copper arylnitrene intermediates. Angew.
Chem. Int. Ed. 2017, 56 (23), 6426-6430.
47. Stone, K. L.; Borovik, A. S., Lessons from nature: unraveling
biological C–H bond activation. Curr. Opin. Chem. Biol. 2009,
13 (1), 114-118.
48. Warren, J. J.; Tronic, T. A.; Mayer, J. M., Thermochemistry of
proton-coupled electron transfer reagents and its implications.
Chem. Rev. 2010, 110 (12), 6961-7001.
49. Bordwell, F. G.; Cheng, J. P.; Harrelson, J. A., Homolytic bond
dissociation energies in solution from equilibrium acidity and
22. Berry, J. F., Terminal nitrido and imido complexes for the late
transition metals. Comment. Inorg. Chem. 2009, 30 (1-2), 28-66.
23. Zdilla, M. J.; Dexheimer, J. L.; Abu-Omar, M. M., Hydrogen
atom transfer reactions of imido manganese(V) corrole:ꢀ one re-
action with two mechanistic pathways. J. Am. Chem. Soc. 2007,
129 (37), 11505-11511.
24. Brown, S. D.; Betley, T. A.; Peters, J. C., A Low-spin d5 iron
imide:ꢀ nitrene capture by low-coordinate iron(I) provides the 4-
coordinate Fe(III) complex [PhB(CH2PPh2)3]Fe⋮N-p-tolyl. J.
Am. Chem. Soc. 2003, 125 (2), 322-323.
25. Brown, S. D.; Peters, J. C., Ground-state singlet L3Fe-(μ-N)-
FeL3 and L3Fe(NR) complexes featuring pseudotetrahedral
Fe(II) centers. J. Am. Chem. Soc. 2005, 127 (6), 1913-1923.
26. Betley, T. A.; Peters, J. C., Dinitrogen chemistry from trigonally
coordinated ion and cobalt platforms. J. Am. Chem. Soc. 2003,
125 (36), 10782-10783.
27. Thomas, C. M.; Mankad, N. P.; Peters, J. C., Characterization of
the terminal iron(IV) imides {[PhBPtBu2(pz‘)]FeIV⋮NAd}+. J.
Am. Chem. Soc. 2006, 128 (15), 4956-4957.
28. Bart, S. C.; Lobkovsky, E.; Bill, E.; Chirik, P. J., Synthesis and
hydrogenation of bis(imino)pyridine iron imides. J. Am. Chem.
Soc. 2006, 128 (16), 5302-5303.
29. Bowman, A. C.; Milsmann, C.; Bill, E.; Turner, Z. R.; Lobkov-
sky, E.; DeBeer, S.; Wieghardt, K.; Chirik, P. J., Synthesis and
electronic structure determination of N-alkyl-substituted
ACS Paragon Plus Environment