Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Mukhopadhyay, Green Chem., 2012, 14
DOI: 10.1039/C5CC05985B
Ponnuswamy, K. S. Nahm, and G. G. Kumar, New J. Chem., 2012, 36
,
1312-1319.
9
(a) R. Latta, G. Springsteen, and B. H. Wang, Synthesis, 2001, 1611-
1613. (b) T. Maki, K. Ishihara, and H. Yamamoto, Org. Lett., 2005,
7
,
5043-5046. (c) T. Maki, K. Ishihara, and H. Yamamoto, Tetrahedron,
2007, 63, 8645-8657.
10 (a) T. Maugard, M. Remaud-Simeon, D. Petre, and P. Monsan,
Tetrahedron, 1997, 53, 5185-5194. (b) F. Le Joubioux, O. Achour, N.
Bridiau, M. Graber, and T. Maugard, J. Mol. Catal. B: Enzym., 2011,
70, 108-113.
11 (a) H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi,
Science, 2013, 341, 1230444. (b) Y. Chen, Z. Li, Q. Liu, Y. Shen, X. Wu,
D. Xu, X. Ma, L. Wang, Q.-H. Chen, Z. Zhang, and S. Xiang, Cryst.
Growth Des., 2015, 15, 3847-3852. (c) Y. Shen, Z. Li, L. Wang, Y. Ye,
Q. Liu, X. Ma, Q. Chen, Z. Zhang, and S. Xiang, J. Mater. Chem. A,
Scheme 2. Synthesis of bioactive amide-containing compounds by the heterogeneous
Zr-AzoBDC catalyst.
amidation of nitroarenes followed by hydrogenation, was
required.24 Similarly, Paracetamol was obtained directly from
acetic acid and 4-aminophenol in 73% yield through utilization
of Zr-AzoBDC. Finally, a reasonable yield was achieved in the
synthesis of Flutamide, an oral and non-steroidal antiandrogen
drug mainly used for prostate cancer treatment. It is noted
that these drugs were previously synthesized by reacting
amines with acid anhydride or acyl halides.25 One can argue
that increased efficiency in such reactions makes the chemical
processes more "green" by reducing the amount of steps in
the synthetic sequences and the resulting purification.
In conclusion, we have reported the synthesis of Zr-AzoBDC
constructed from an azobenzene-4,4ʹ-dicarboxylate (4-Az)
linker and Zr6O4(OH)4(CO2)12 cluster. This structure exhibited
exceptional catalytic activity toward direct amidation of
benzoic acids under mild conditions (10 mol% catalyst loading,
THF, 70 °C). The heterogeneous nature of Zr-AzoBDC enabled
it to be recycled and re-applied to new reactions (5 times)
without degradation in catalytic activity. Furthermore, the
substrate scope of Zr-AzoBDC was demonstrated to be widely
applicable to various substituted carboxylic acid and amine
derivatives for the synthesis of bioactive amide compounds.
Vietnam National University – Ho Chi Minh City (VNU-HCM)
is acknowledged for financial support via grant No. B2015-20-
04. Catalyst synthesis and characterization were supported by
B2011-50-01TĐ. We thank Dr. H. Furukawa, Prof. H. T. Nguyen,
Mr. T. T. Vu, Ms. A. M. Osborn, and Mr. H. Q. Pham for their
valuable discussions and assistance. Prof. O. M. Yaghi is
gratefully acknowledged for supporting MANAR.
2015,
3
, 593-599. (d) Z. Zhang, Z.-Z. Yao, S. Xiang, and B. Chen,
Energy Environ. Sci., 2014,
7
, 2868-2899.
12 (a) A. Corma, H. García, and F. X. Llabrés i Xamena, Chem. Rev., 2010,
110, 4606-4655. (b) J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, and C.-
Y. Su, Chem. Soc. Rev., 2014, 43, 6011-6061. (c) Z.-Y Gu, J. Park, A.
Raiff, Z. Wei, H.-C. Zhou, ChemCatChem 2014, 6, 67-75. (d) I. Luz, A.
Corma, and F. X. Llabrés i. Xamena, Catal. Sci. Technol. 2014,
4,
1829-1836.
13 (a) J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S.
Bordiga, and K. P. Lillerud, J. Am. Chem. Soc., 2008, 130, 13850-
13851. (b) H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W. L.
Queen, M. R. Hudson, and O. M. Yaghi, J. Am. Chem. Soc., 2014, 136
,
4369-4381.
14 (a) L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M. H. Nilson, S.
Jakobsen, K. P. Lillerud, and C. Lamberti, Chem. Mater., 2011, 23
1700-1718. (b) F. Vermoortele, R. Ameloot, A. Vimont, C. Serre, and
D. E. De Vos, Chem. Commun., 2011, 47 1521-1523. (c) F.
,
,
Vermoortele, M. Vandichel, B.Van de Voorde, R. Ameloot, M.
Waroquier, V. Van Speybroeck, and D. E. De Vos, Angew. Chem. Int.
Ed., 2012, 51, 4887-4890. (d) F. Vermoortele, B. Bueken, G. Le Bars,
B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi,
M. Waroquier, V. Van Speybroeck, C. Kirschhock, and D. E. De Vos, J.
Am. Chem. Soc., 2013, 135, 11465-11468.
15 (a) H. T. N. Le, T. V. Tran, N. T. S. Phan, and T. Truong, Catal. Sci.
Technol., 2015, 5, 851-859. (b) N. T. T. Tran, Q. H. Tran, and T.
Truong. J. Catal., 2014, 320, 9-15. (c) G. H. Dang, T. T. Dang, D. T. Le,
T. Truong, and N. T. S. Phan, J. Catal., 2014, 319, 258-264.
16 (a) A. Schaate, S. Dühnen, G. Platz, S. Lilienthal, A. M. Schneider, and
P. Behrens, Eur. J. Inorg. Chem., 2012, 790-796. (b) Q. Yang, V.
Guillerm, F. Ragon, A. D. Wiersum, P. L. Llewellyn, C. Zhong, T. Devic,
C. Serre, and G. Martin, Chem. Commun., 2012, 48, 9831-9833. (c) F.
Rogan, H. Chevreau, T. Devic, C. Serre, and P. Horcajada, Chem. –Eur.
J., 2015, 21, 7135-7143. (d) A. Schaate, P. Roy, A. Godt, J. Lippke, F.
Waltz, M. Wiebcke, and P. Behrens, Chem. –Eur. J., 2011, 17, 6643-
6651.
17 A. L. Spek, Acta Cryst., 2009, D65, 148-155.
18 C. L. Allen, A. R. Chhatwal, and J. M. J. Williams, Chem. Commun.,
2012, 48, 666-668.
19 L. J. Gooßen, D. M. Ohlmann, and P. P. Lange, Synthesis, 2009, 160-
164.
Notes and references
1
2
3
V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480, 471-479.
E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606-631.
A. K. Ghose, V. N. Viswanadhan, and J. J. Wendoloski, J. Comb.
Chem., 1999,
1, 55-68.
4
(a) C. L. Allen and J. M. J. Williams, Chem. Soc. Rev., 2011, 40, 3405-
3415. (b) S. Roy, S. Roy, and G. W. Gribble, Tetrahedron, 2012, 68
,
9867-9923.
5
H. Charville, D. Jackson, G. Hodges, and A. Whiting, Chem. Commun.,
2010, 46, 1813-1823.
20 R. M. Lanigan, P. Starkov, and T. D. Sheppard, J. Org. Chem., 2013,
78, 4512-4523.
21 H. Lundberg, F. Tinnis, and H. Adolfsson, Synlett., 2012, 23, 2201-
6
7
A. Goswami and S. G. Van Lanen, Mol. BioSyst., 2015, 11, 338-353.
(a) M. Hosseini-Sarvari and H. Sharghi, J. Org. Chem., 2006, 71, 6652-
6654. (b) H. Thakuria, B. M. Borah, and G. Das, J. Mol. Catal. A:
Chem., 2007, 274, 1-10. (c) S. M. Coman, M. Florea, V. I. Parvulescu,
V. David, A. Medvedovici, D. De Vos, P. A. Jacobs, G. Poncelet, and P.
Grange, J. Catal., 2007, 249, 359-369. (d) L. Ma’mani, M. Sheykhan,
A. Heydari, M. Faraji, and Y. Yamini, Appl. Catal., A, 2010, 377, 64-69.
(a) N. Narender, P. Srinivasu, S. J. Kulkarni, and K. V. Raghavan,
2204.
22 (a) J. Gascon, A. Corma, F. Kapteijn, and F. X. Llabrés i Xamena, ACS
Catal., 2014,
J. Cejka, and H. Garcia, Catal. Sci. Technol., 2013,
Valvekens, F. Vermoortele, and D. E. De Vos, Catal. Sci. Technol.,
2013, , 1435-1445.
4
, 361-378. (b) A. Dhakshinamoorthy, M. Opanasenko,
3
, 2509-2540. (c) P.
3
8
23 C. E. Garrett and K. Prasad, Adv. Synth. Catal., 2004, 346, 889-900.
24 S. M. Kelly and B. H. Lipshutz, Org. Lett., 2014,16, 98-101.
25 (a) A. S. Travis, The Chemistry of Anilines. Wiley, 2007. (b) R. G.
Stabile and A. P. Dicks J. Chem. Educ., 2003, 80, 1439.
Green Chem., 2000, 2, 104-105. (b) J. W. Comerford, J. H. Clark, D. J.
Macquarrie, and S. W. Breeden, Chem. Commun., 2009, 2562-2564.
(c) S. Ghosh, A. Bhaumik, J. Mondal, A. Mallik, S. Sengupta, and C.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins