Substituted Quinolines
4325
2. (a) Doube, D.; Bloun, M.; Brideau, C.; Chan, C.; Desmarais, S.; Eithier, D.;
Falgueyeret, J. P.; Friesen, R. W.; Girad, M.; Girad, Y.; Guay, J.; Tagari, P.;
Yong, R. N. Quinolines as potent 5-lipoxygenase inhibitors. Bioorg. Med.
Chem. Lett. 1998, 8, 1255; (b) Maguire, M. P.; Sheets, K. R.; Mcvety, K.;
Spada, A. P.; Zilberstein, A. A new series of PDGF receptor tyrosine kinase inhibi-
tors: 3-substituted quinoline derivatives. J. Med. Chem. 1994, 37, 2129.
3. (a) Ko, T. C.; Hour, M. J.; Lien, J. C.; Teng, C. M.; Lee, K. H.; Kuo, S. C.;
Huang, L. Synthesis of 4-alkoxy-2-phenyl quinolines derivatives as potent antipla-
telet agents. J. Bioorg. Med. Chem. Lett. 2001, 11, 279; (b) Ferrarini, P. L.;
Mori, C.; Badwneh, M.; Manera, C.; Martinelli, A.; Miceli, M.; Ramagnoli, F.;
Saccomanni, G. Unusual nitration of substituted 7-amino-1,8-naphthyridine in
the synthesis of compounds with antiplatelet activity. J. Heterocycl. Chem.
1997, 34, 1501; (c) Maguire, M. P.; Sheets, K. R.; McVety, K.; Spada, A. P.;
Zilberstein, A. J. Med. Chem. 1994, 37, 2129.
4. (a) Saito, I.; Sando, S.; Nakatani, K. Improved selectivity for binding of naphthyr-
idine dimmer to guanine–guanine mismatch. Bioorg. Med. Chem. 2001, 9, 2381;
(b) He, C.; Lippard, S. J. Synthesis and electrochemical studies of Diiron
complexes of 1,8-naphthyridine-based dinucleating ligands to Model features of
the active Sites of non-heme Diiron enzymes. J. Am. Chem. Soc. 2001, 40, 1414.
5. (a) Agarwal, A. K.; Jenekhe, S. A. A new conjugated polyanthrazolines containing
´
thiophene moieties in the mainchaın. Macromolecules 1991, 24, 6806;
(b) Zhang, X.; Shetty, A. S.; Jenekhe, S. A. Electroluminescence and photophysi-
cal properties of polyquinolines. Macromolecules 1999, 32, 7422; (c) Zhang, X.;
Shetty, A. S.; Jenekhe, S. A. Electroluminescence of multi component conjugated
polymers. Macromolecules 2000, 33, 2069; (d) Jenekhe, S. A.; Lu, L.;
Alam, M. M. New conjugated polymers with donar–aceptor: synthesis and photo-
physics of carbazole–quinolines and phenothiazine–quinolines copolymers.
Macromolecules 2001, 34, 7315.
6. (a) Hu, Y. Z.; Zang, G.; Thummel, R. P. Friedlander approach for the incorporation
of 6-bromoquinoline in to novelchelating ligands. Org. Lett. 2003, 5, 2251;
(b) Arcadi, A.; Chiarini, M.; Di, S.; Giuseppe; Marinelli, F. A new green
approach to the Friedlander synthesis of quinolines. Synlett. 2003, 203;
(c) McNaughton, B. R.; Miller, B. L. A mild and efficient one step synthesis of
quinolines. Org. Lett. 2003, 5, 4257; (d) Yadav, J. S.; Reddy, B. V. S.;
Premlatha, K. Bi(OTf)3-catalyzed Friedlander hetroannulation:
A rapid
synthesis of 2,3,4 trisubstituted quinolines. Synlett 2004, 963; (e) Yadav, J. S.;
Reddy, B. V. S.; Sreedhar, P.; Rao, R. S.; Nagaiah, K. Silver phosphotungstate:
A novel and recyclable hetropolyacid for Friedlander hetro annulation. Synthesis
2004, 2381; (f) Mogilaih, K.; Reddy, C. S. A efficient Friedlander condensation
using sodium fluoride. Synth. Commun. 2003, 3131; (g) De, S. K.; Gibbs, R. A.
A mild and efficient one step synthesis of quinolines. Tetrahedron Lett. 2005,
46, 1647; (h) Wu, J.; Zhang, L.; Diao, T. N. A approach to quinolines via Fried-
lander synthesis catalysed by FeCl3 or Mg(ClO4)3.. Synlett 2005, 2653.
7. Lee, B. S.; Lee, J. H.; Chi, D. Y. Novel synthesis of 2-chloroquinolines from
2-vinylanilines. J. Org. Chem. 2002, 67, 7884.
8. Jiang, B.; Si, Y. G. Zn(2)–mediated alkynylalation-cyclization of o-trifluoroacetyl
anilines. J. Org. Chem. 2002, 67, 9449.
9. (a) Chandratre, S. J.; Filmwala, Z. A. Syntheses of quinolines by Friedlander’s
heteroannulation methodmin aqueous hydrotropic medium. J. Dispersion Sci.
Tech. 2007, 28, 279; (b) Muscia, G. C.; Bollini, M.; Carnevale, J. P.;
´
Bruno, A. M.; Ası, S. E. Microwave assisted Friedlander quinoline synthesis.