Lipshutz et al.
TABLE 1. Com p a r ison of 1st a n d 2n d Gen er a tion F or m a tion of Ni/C
1st generationa
2nd generationb
impregnation
aqueous Ni(NO3)2‚6H2O
aqueous Ni(NO3)2‚6H2O
distillation of H2O (180 °C)
addition of undistilled THF
distillation of THF (100 °C)
ultrasound, 30 min
distillation of H2O (175 °C,
then 210 °C, 15 min)
washing
drying
three times with H2O
twice with undistilled THF
twice with H2O
100 °C, vacuum, 12 h
predrying at room temperature, vacuum, 2 h
100 °C, vacuum, 18 h
a
b
cf. ref 15. cf. ref 27.
exceptions outside of our work11 include hydrodehaloge-
nation reactions of aryl chlorides using ‘nickel-on-
charcoal’ (Ni/C)12,13 and Kumada couplings with nickel
mounted on a Merrifield resin.14 The potential for Ni/C
to catalyze a variety of cross-coupling reactions involving
inexpensive aryl chlorides has recently been expanded
to include Negishi-,15 Suzuki-,16 and Kumada-type cou-
plings,17 aromatic aminations,18 and hydrodehalogena-
tions.19 Whereas the pathway for heterogeneous hydro-
genation reactions using transition metal catalysts is an
example of true surface chemistry involving chemisorp-
tion of the hydrogen on a metal surface,20 the mode of
action for transformations of aryl halides is not obvious.
For Pd/C-based Suzuki couplings of aryl chlorides, a
heterogeneous mechanism involving ‘synergistic anchi-
meric and electronic effects’ was suggested to account for
the high catalytic activity; i.e., interactions of the sub-
strate with Pd atoms which are in proximity to each
other.8 Can such a scheme also explain the activities
found with Ni/C, as postulated previously for hydrode-
halogenations of aryl chlorides,13 or is a different hypoth-
esis needed in this case? Is this chemistry truly hetero-
geneous; i.e., catalyzed only by nickel atoms attached to
the support (denoted as ‘NiC’)? If so, then in addition to
such an association with the charcoal, how can nickel
accommodate both an oxidative addition and simulta-
neous coordination of (phosphine) ligands, all within the
coordination sphere of the metal? Does Ni/C, rather, serve
as a (reversible?) reservoir for nickel-in-solution (Nisol),
as previously postulated for certain Pd/C-mediated con-
versions, involving a ‘release/capture mechanism’, deter-
21,22
mined by a ‘three-phase test’
employing polymer-
bound substrates23 and by atomic absorption or emission
spectroscopy as a quantitative indicator of the transition
metal present in solution after filtration of the reaction
suspension.24-26 In this contribution, we offer physical
evidence, for the first time, on the impact of varying
methods of reduction of Ni(II)/C on the texture of the
resulting catalyst, which is correlated with catalytic
activity in organic transformations. Also addressed is the
issue of catalyst bleed from the support, and results are
presented on catalyst activity under differing reaction
conditions.
(5) Bergbreiter, D. E.; Chen, B. J . Chem. Soc., Chem. Commun.
1983, 1238.
(6) Augustine, R. L.; O’Leary, S. T. J . Mol. Catal. 1992, 72, 229.
(7) For several polymer-bound Pd catalyzed reactions, see: Berg-
breiter, D. E. Chem. Rev. 2002, 102, in press.
(8) LeBlond, C. R.; Andrews, A. T.; Sun, Y.; Sowa, J . R., J r. Org.
Lett. 2001, 3, 1555; and references therein.
(9) (a) Hydrogenation: Hill, F. N.; Selwood, P. W. J . Am. Chem. Soc.
1949, 71, 2522. (b) Aika, K.-I.; Yamaguchi, T.; Onishi, T. Appl. Catal.
1986, 23, 129. (c) Medina, F.; Salagre, P.; Sueiras, J . E. Appl. Catal. A
1993, 99, 115. (d) Coq, B.; Figueras, F.; Geneste, P.; Moreau, C.;
Moreau, P.; Warawdekar, M. J . Mol. Catal. 1993, 78, 211. (e) Savoia,
D.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J . Org. Chem. 1981,
46, 5344. (f) CO/H2: Vannice, M. A. J . Catal. 1976, 44, 152. (g) Vannice,
M. A.; Garten, R. L. J . Catal. 1979, 56, 236. (h) Decomposition of
alkanes: Domingo-Garcia, M.; Fernandez-Morales, I.; Lopez-Garzon,
F. J . Appl. Catal. A 1994, 112, 75. (i) Otsuka, K.; Seino, T.; Kobayashi,
S.; Takenaka, S. Chem. Lett. 1999, 1179. (j) NO/CO: Mehandjiev, D.;
Bekyarova, E.; Khristova, M. J . Colloid Interface Sci. 1997, 192, 440.
(10) Gandia, L. M.; Montes, M. J . Catal. 1994, 145, 276.
(11) Lipshutz, B. H. Adv. Synth. Catal. 2001, 343, 313.
(12) Yakovlev, V. A.; Simagina, V. I.; Likholobov, V. A. React. Kinet.
Catal. Lett. 1998, 65, 177.
Resu lts a n d Discu ssion
P r ep a r a tion , Textu r e, a n d Activity of Ni/C. In our
original preparation of Ni/C,15 an aqueous solution of Ni-
(NO3)2‚6H2O was used to supply nickel(II) for impregnat-
ing activated charcoal by distillation of both the water
and subsequently added undistilled THF. The ‘crude’
Ni(II)/C was then washed several times with H2O and
THF and dried in vacuo at 100 °C for 12 h (Table 1). In
time, further study revealed that exposure to THF was
not crucial for catalyst activity. Far more important for
the new protocol is better control of temperature and time
of impregnation and drying, which is essential for gaining
(13) Yakovlev, V. A.; Terskikh, V. V.; Simagina, V. I.; Likholobov,
V. A. J . Mol. Catal. A 2000, 153, 231.
(14) Styring, P.; Grindon, C.; Fisher, C. M. Catal. Lett. 2001, 77,
219. For a few other polymer-immobilized Ni reactions, see ref 7, 41,
and Braca, G.; Di Girolamo, M.; Raspolli Galletti, A. M.; Sbrana, G.;
Brunelli, M.; Bertolini, G. J . Mol. Catal. 1992, 74, 421.
(15) Lipshutz, B. H.; Blomgren, P. A. J . Am. Chem. Soc. 1999, 121,
5819.
(16) Lipshutz, B. H.; Sclafani, J . A.; Blomgren, P. A. Tetrahedron
2000, 56, 2139.
(17) Lipshutz, B. H.; Tomioka, T.; Blomgren, P. A.; Sclafani, J . A.
Inorg. Chim. Acta 1999, 296, 164.
(21) (a) Rebek, J ., J r. Tetrahedron 1979, 35, 723. (b) Kagan, H. B.;
Peyronel, J . F.; Yamagishi, T. In Advances in Chemistry-Inorganic
Compounds With Unusual Properties II; King, R. B., Ed.; American
Chemical Society: Washington, DC, 1979; Vol. 173, Chapter 6, pp 50-
66.
(22) Bergbreiter, D. E.; Chen, B.; Weatherford, D. J . Mol. Catal.
1992, 74, 409.
(23) Davies, I. W.; Matty, L.; Hughes, D. L.; Reider, P. J . J . Am.
Chem. Soc. 2001, 123, 10139.
(24) J ayasree, S.; Seayad, A.; Chaudhari, R. V. J . Chem. Soc., Chem.
Commun. 1999, 1067.
(18) Lipshutz, B. H.; Ueda, H. Angew. Chem. 2000, 112, 4666;
Angew. Chem., Int. Ed. 2000, 39, 4492.
(19) Lipshutz, B. H.; Tomioka, T.; Sato, K. Synlett 2001, 970.
(20) (a) Horiuti, I.; Polanyi, M. Trans. Faraday Soc. 1934, 30, 1164.
(b) Augustine, R. L.; Yaghmaie, F.; Van Peppen, J . F. J . Org. Chem.
1984, 49, 1865. (c) Ehwald, H.; Shestov, A. A.; Muzykantov, V. S. Catal.
Lett. 1994, 25, 149. (d) Ertl, G. Chem. Rec. 2001, 1, 33. (e) Zaera, F.
Acc. Chem. Res. 2002, 35, 129.
(25) Biffis, A.; Zecca, M.; Basato, M. Eur. J . Inorg. Chem. 2001, 1131.
(26) Zhao, F.; Bhanage, B. M.; Shirai, M.; Arai, M. Chem. Eur. J .
2000, 6, 843.
1178 J . Org. Chem., Vol. 68, No. 4, 2003